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Abstract—We consider the effect of power state transitions
on the lifetime of Base Stations (BSs) in a cellular network. In
particular, we take into account the impact of putting in sleep
mode the BS, and also the change of the radiated power. When the
BS reduces its power consumption, its lifetime tends to increase,
as a consequence of the temperature reduction. However, the
change in the power state triggers a negative effect which instead
tends to reduce the BS lifetime. We therefore propose a model
to evaluate the BS lifetime considering the two aforementioned
effects, triggered either by the application of a sleep mode state
or a change in the radiated power. Our results, obtained over
a representative case study, indicate that the BS lifetime may
be negatively affected when power state transitions take place.
Therefore, we argue that the lifetime should be considered in the
process of deciding how and when to change from a power state
to another one.

I. INTRODUCTION

Cellular networks are intensely deployed in the whole
world. The downlink power of a single Base Station (BS)
depends on the number of terminals connected to it, their
signal to interference plus noise ratio, as well as the amount
of received power for each terminal. In the literature, different
solutions have been proposed so far in order to adjust the power
radiated by the BS (see for example [1]) in order to serve its
associated users, and also to reduce the overall interference
with the neighboring BSs.

At the same time, power consumption consumed by a
single BS is far to be negligible [2]. Moreover, the radiated
transmit power influences the total BS power consumption [3].
These facts, coupled also with the high cardinality of BSs in
an operator network, have stimulated researches towards the
reduction of power in cellular networks. Among the different
proposed solutions, one of the most promising approaches to
reduce energy is the application of a sleep mode (SM) state
to the BS. More in depth, the BS is completely powered off
during low traffic hours (e.g. at night), still guaranteeing cover-
age and traffic requirements by the remaining BSs that remain
powered on. The efficacy and efficiency of BS SMs have
been extensively studied in previous work (see for example
the survey [4]).

A power state transition may therefore occur either when
the BS passes from full power to SM (and vice-versa), or when
the radiated power is varied. The change in the power state
may trigger a change on the temperature of some of the BS
components. However, some natural questions arise: How do
SM and radiated power impact the BS lifetime? Is it possible
to build a model to predict the lifetime increase/decrease of a
BS as a consequence of its power state change? The answer to

these questions is the goal of this paper. In particular, we first
consider the main effects triggered by the temperature change
on the BS. Then, we build a simple model to compute the
lifetime increase/decrease of the BS. Finally, we evaluate the
proposed model on a realistic case-study. Our results indicate
that the lifetime of the single BSs may be negatively affected
when power state transitions take place. This reduction of
lifetime will deteriorate the reliability of the network (due to
the fact that BSs increase their failure rate), as well as bringing
to an increase in the reparation and mainteinance costs of BSs.
Therefore, we argue that the lifetime should be considered in
the process of deciding how and when to change from a power
state to another one.

The closest paper to our work is [5], which proposes a
simple model to compute the lifetime increase/decrease of a
an entire cellular network as a consequence of a SM approach.
In this paper, we go three steps further by: i) proposing a model
that consider different power state transitions (e.g., due to SM
and/or radiated power scaling), ii) evaluating the lifetime on
the whole network and also on the single BSs, iii) evaluating
the lifetime evolution over time. More in depth, when the
BS consumes less power or it is put in SM, the lifetime
tends to increase, since the temperature of its components is
reduced. However, the power state change (either from power
on to SM or for different values of radiated power) triggers a
negative effect which tends to decrease the BS lifetime. The
combination of these two effects then lead to the variation of
the total lifetime experienced by the BS.

The rest of the paper is organized as follows. The main
effects related to temperature impacting the BS lifetime are
summarized in Sec. II. Sec. III then presents our model for
estimating the BS lifetime. Results, obtained from a realistic
case study, are reported in Sec. IV. Finally, Sec. V concludes
our work.

II. IMPACT OF TEMPERATURE ON THE BS LIFETIME

A first order model to compute the failure rate γT of a
device given its temperature T is the Arrhenius law [6]:

γT = γ0e−
Ea
KT [1/h] (1)

where γ0 is the failure rate estimated assuming a very high
temperature, Ea is the activation energy (i.e. the minimum
energy needed to activate the failure variation) and K is the
Boltzmann constant. Interestingly, when the temperature is
decreased, the failure rate is decreased too. Although more
detailed models have been proposed in the literature (see for
example [7]) all of them predict a decrease in the failure



rate when the temperature is reduced. This means that, if the
reduction of the temperature would be the only effect taken
under consideration, keeping the BS in low-power states for
the longest amount of time would be of benefit for its lifetime.

However, a device may suffer strain and fatigue when
temperature conditions change, in particular when this happens
in a cyclic way (i.e. from one temperature to another one).
The Coffin-Manson model [8] describes the effects of material
fatigue caused by cyclic thermal stress. The predicted failure
rate due γ∆T to the thermal cycling effect is then expressed
as:

γ∆T =
fTC

Nf
[1/h] (2)

where fTC is the frequency of thermal cycling and γ∆T is the
estimated failure rate. The term Nf is the number of cycles
to failure, and it is commonly denoted as:

Nf = C0(∆T −∆T0
)−q (3)

where ∆T is the temperature variation of the cycle, ∆T0
is the

maximum admissible temperature variation without a variation
in the failure rate, C0 is a constant material dependent, q is the
Coffin-Manson exponent. From this model, we can clearly see
that the more often the BS experiences a temperature variation,
the higher will be also its failure rate. In the following, we
therefore build a model to capture this effect and also to
consider the impact of temperature reduction reported in Eq. 1.

III. BS LIFETIME MODEL

We first derive the model to compute the lifetime in-
crease/decrease of a single BS, and then we extend this model
to the whole network. We start from the assumption that each
BS in the network set up a discrete set of power state values.
The total BS power is composed by two terms [2]: the static
power, that has to be counted if the BS is not in SM, and
the dynamic power, which instead depends on the radiated
power. In particular, we assume a set of P power states whose
cardinality isK = |P|. Let us denote with P1,P2,...,PK−1 ∈ P
the power consumed by the BS for dynamic power with
indexes 1,2,...,(K−1), respectively. Moreover, Poff ∈ P is the
power consumed when the BS is in SM state. The power states
are ordered in increasing order, i.e., Poff < P1 < P2 < PK−1.

For each power state, we denote as τoff , τ1,τ2,...,τK−1

the time spent by the BS at power state Poff ,P1,P2,...,PK−1,
respectively. The total amount of time under consideration is
denoted with T . Moreover, we associate a temperature value
of the BS for each power state. Given the fact that we have
different temperatures, according to Eq. 1 we can associate a
failure rate for each power state: γoff ,γ1,γ2,...,γK−1.

The total failure rate of BS γs considering only the impact
of different power states is then defined as:

γs = γoff
τoff
T

+
K−1∑

i=1

γi
τi
T

[1/h] (4)

which is the sum of the different failure rates, weighed by the
normalized amount of time spent in each power state.

In the following, we consider the impact on the failure rate
of the thermal cycling effect, which is triggered by the power

state transitions. In particular, we denote with δi−j the failure
rate triggered when passing between power state i and power
state j. Similarly, we denote as δoff−j the failure rate when
passing between a SM state and power state j. By assuming
that the amount of time when passing from one power state
to another one does not influence the failure rate, we express
the total failure rate δt due to power state transitions as:

δt =

K−1∑

j

δoff−j +

K−1∑

i

K−1∑

j>i

δi−j [1/h] (5)

The total failure rate of BS γtot is then the sum of the
failure rates considering the different power states and the
failure rates due to power state transitions:

γtot = γs + δt [1/h] (6)

γtot is the sum of failure rates as we have assumed that
the failure rates due to the different effects are statistically
independent from each other [9].

In the literature, it is common to evaluate the in-
crease/decrease of the current failure rate γtot with respect to

a reference failure rate γref
tot . This metric is called acceleration

factor [8], which we denote as:

AF =
γtot

γref
tot

(7)

In particular, if the current failure rate is lower than the
reference failure rate, the AF is lower than one, and therefore
the lifetime is increased. On the contrary, if the AF is greater
than one, the lifetime is decreased. Ideally, the AF should be

always kept below one. By moving γref
tot inside Eq. (6) we can

express AF as:
AF = AFs +AFt (8)

where AFs = γs/γ
ref
tot is the acceleration factor due to the

time spent in different power states, while AFt = δt/γ
ref
tot is

the acceleration factor due to power state transitions.

We can express the AFs term as:

AFs = AFoff

τoff
T

︸ ︷︷ ︸

SM

+

K−1∑

i=1

[AFi

τi
T
]

︸ ︷︷ ︸

radiated power

(9)

where AFoff = γoff/γ
ref
tot is the acceleration factor in SM,

which is always lower than one since we have assumed that the
temperature of the SM state is lower compared to the reference

temperature. Similarly, AFi = γi/γ
ref
tot is the acceleration

factor in power state i, which is again lower or equal than than
one since the temperature at power state k is always lower or
equal than the reference temperature. Moreover, since the tem-
perature at power state i is lower than the temperature at state
i−1, it holds that: AFoff < AF1 < AF2 < ... < AFK−1 ≤ 1.

We then consider the second term AFt of Eq. 8. According
to Eq. 2, the failure rate due to power transitions between state

i and state j can be defined as δi−j =
fi−j

N
f
i−j

, where fi−j is

the frequency of power switching between the states and Nf
i−j

is the maximum number of cycles between state i and state
j before a failure occurs. Intuitively, when fi−j is larger than



Nf
i−j , a failure occurs on the device. The ratio between δi−j

and γref
tot is then defined as:

δi−j

γref
tot

= χref
i−jfi−j (10)

where χi−j = 1

N
f
i−jγ

ref
tot

is a weigh parameter of the power

state frequency fi−j . The acceleration factor due to power state
transitions is then defined as:

AFt =

K−1∑

j=1

χref
off−jfoff−j

︸ ︷︷ ︸

SM

+

K−1∑

i=1

K−1∑

j>i

[χref
i−jfi−j ]

︸ ︷︷ ︸

radiated power

(11)

AFt can take values even larger than one, since both foff−j

and fi−j may be larger than one (especially when different
power state transitions occur during the time period T ). As a
consequence, this term tends to increase the total acceleration
factor and therefore to decrease the BS lifetime.

We now consider the different parameters included in the

AF metric. In particular, the weights χref
off−j and χref

i−j are
HW parameters, i.e., they are fixed given the failure rate
at the reference temperature and the number of cycles to
failures. Similarly, also the terms AFoff and AFi may be
known by measuring the failure rate at a given power value.
On the contrary, the terms τoff and foff−j depends on the
implementation of the SM approach. In practice, these terms
need to be carefully planned by taking into account the current
BS and the neighboring ones, i.e., to avoid a coverage hole or
an overloading of the neighboring BSs. Similarly, the terms τi
and fi−j depends instead on the policy to allocate power to
users, which may depend on the number of active terminals
and their signal to interference ratio.

Since both SMs and power allocation states are varied
considering a set of BSs as a whole, an operator might be
interested to observe the acceleration factor over the BS set
Z . In particular, we can define an average AF as:

AF tot =

∑
AF i

|Z|
(12)

where AF i is the acceleration factor of BS i computed with
Eq. 8. Intuitively, if AF tot < 1, the BSs in the network fails
less often compared to the reference failure rate, and therefore
the average lifetime tends to increase. On the contrary, when
AF tot > 1 the lifetime tends to decrease. Similarly, the oper-
ator might be interested to observe the worst case acceleration
factor, i.e., AFmax = maxi AF

i.

IV. MODEL EVALUATION

We first detail the algorithm and the scenario used to
compute the input parameters for our model, then we discuss
how we have set the model parameters, and finally we show
the main results obtained.

A. Power-aware Algorithm and Scenario

We consider an energy-aware algorithm and a realistic cel-
lular deployment scenario, both obtained from [10]. Due to the
lack of space, we refer the reader to [10] for a comprehensive

TABLE I. AFi VALUES FOR EACH POWER STATE

Power

State
P1 (10 W) P2 (20 W) P3 (30 W) P4 (40 W)

AFi
1−(1−AFoff )

2

1−(1−AFoff )

3

1−(1−AFoff )

6
1

TABLE II. FREQUENCY NOTATION AND FREQUENCY WEIGHT FOR

EACH POWER VARIATION

Power

Variation
off 10 W 20 W 30 W

Frequency

Notation
Foff F1 F2 F3

Frequency

Weight
χ
off

ref
Wχ

off

ref
2Wχ

off

ref
3Wχ

off

ref

description. In brief, we consider a scenario with 33 Universal
Mobile Telecommunication System (UMTS) macro BSs and
a service area of 9.2 × 9.2 km2. Each macro BS consumes
a fixed amount of power, that has to be counted if the BS is
powered on, and a dynamic one which depends on the radiated
power (that can take values equal to 10W, 20W, 30W or 40W).
Inside the SA, we assume more than 3000 user terminals (UTs)
requesting voice and data services. Unless otherwise specified,
we assume the maximum data rate for each UT is equal to 384
kbps. Moreover, we assume a day-night traffic variation with
a deterministic profile over the 24h, with a minimum traffic
granularity equal to one hour. Over such scenario, we solve the
optimization problem of minimizing the energy consumption
of active BSs while guaranteeing the required coverage and
capacity demand for all the UTs which are active in each time
period. For each BS, we collect the frequency and duration of
each power state obtained from the solution of the optimization
problem.

B. Parameters Setting

We first assume that the reference failure rate γtot
ref is the

one obtained when the BS transmits at maximum power, i.e.,
40W. γtot

ref is normalized to 1 for simplicity. Then, our goal is
to compute the BS AF over the whole day under consideration.
To this extent, we need to sum the acceleration factor due to
the time spent in different power states (AFs of Eq. 9) and
the one due to power state transitions (AFt of Eq. 11).

Focusing on AFs, we report in Tab. I the AFi parameter for
each active power state. In particular, we assume that the values

of AFi are linearly selected between
1−(1−AFoff )

2 (which
corresponds to the AF experienced when the BS transmits at
10W) and 1 (which corresponds to the maximum transmission
power). The AFi are always much larger than AFoff , since
we expect that even with radiated power equal to 10W a large
amount of components has to be powered on, leading to a
much higher temperature w.r.t. the SM case.

As next step, we consider the AF due to power state
transitions (AFt). Since setting all the frequency weights χ
in Eq. 11 would be very challenging in practice, we assume

that: i) the same weight χoff
ref is paid when passing from

each of the active power states to SM (and vice-versa), ii)
the same weight is paid when the same difference in terms
of radiated power occurs (e.g., from 10 W to 20 W, or from
20 W to 30 W), iii) the weight paid when the radiated power is

changed is much lower compared to χoff
ref . Tab. II reports the

adopted frequency weights, together with the corresponding
notation for denoting the frequency (e.g., F1 accounts for all
the transitions involving a change in the radiated power equal
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Fig. 1. AF tot in the network vs. different values of parameter W (Blue
bars: AF tot < 1, green bars:AF tot ≥ 1).
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Fig. 2. Normalized time spent in each power state and frequency of power
transitions.

to 10 W). As such, the term AFt is computed as follows:

AFt = Wχoff
ref

∑3
k=1 kFk + χoff

ref Foff , being W a small
value (W << 1). The reasons for choosing these settings
are the following ones. First, we assume that BS components
are optimized to limit the thermal cycling effect triggered by
radiated power variations, therefore we have set the frequency
weights in such a way that they are always much smaller

than χoff
ref (by setting the W parameter). Moreover, we expect

that the highest temperature change is triggered when the BS
enters/leaves a SM state, which justifies the same weight paid
when passing from an active power state to SM. Finally, as
reported in Eq. (2)-(3) the most important factor impacting the
thermal cycling effect is the difference in temperature between
two power states and not their absolute temperature values.
This fact motivates the adoption of a frequency weight based
on the difference in temperature (i.e., off, 10 W, 20 W or
30 W).

Summarizing, we are now able to compute the AF for

a single BS, leaving AFoff , χoff
ref and W as HW input

parameters. Additionally, we assume that all the BSs in the
considered scenarios have the same HW characteristics, i.e,
AFoff and χoff

ref are the same for all the BSs.

C. Case-study Results

We compute the total AF in the network AF tot as defined
in Eq. (12), considering a period of time T equal to 24 hours.
Fig. 2 reports the AF computed considering the variation of

AFoff , χ
off
ref and W . We can clearly see that as AFoff is
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Fig. 3. AF for the single BSs in the network.

reduced, AF tot tends to decrease. Ideally, AFoff may be
equal to zero, meaning that the BS lifetime is increased to
infinity when a SM state is set. However, even in this case,
the network AF tot is strictly larger than zero since a subset
of the BSs in the scenario have to be powered on to meet
user coverage and capacity constraints. On the contrary, AF tot

tends to increase when χoff
ref is increased. Interestingly, two

distinct regions are present: one with AF tot < 1 (i.e. increase
of lifetime), and one with AF tot ≥ 1 (i.e. equal or decrease
of lifetime). Thus, power state transitions may even decrease
the BS lifetime compared to a case in which the BS always
transmits at maximum power. Finally, when W is increased
(left to right subplot), the region in which AF tot < 1 is
promptly reduced. Since in all cases power state transitions
have an impact on the lifetime, we argue that they should be
carefully planned, i.e., either to maximize the BS lifetime or
to limit the lifetime decrease.

In the following, we consider the impact of our model on
the single BSs. To this extent, Fig. 2(a) reports the normalized
time spent in each power state. Interestingly, all the BSs tend
to use the entire set of active power states (corresponding to
a normalized time spent in τ1, τ2, τ3 and τ4), suggesting that
the radiated power tends to follow the dynamics of traffic (i.e.,
maximum during peak hours and then lower during off peak
hours). Moreover, the SM state τoff is reached by a subset
of the BSs, since it is not possible to put in SM all the BSs.
To give more insight, Fig. 2(b) reports the frequency of each
transition. In this case, most of transitions involve difference
of power equal to 10W and 20W, while seldomly a variation
of 30W. Moreover, for the BSs having frequency from/to SM
larger than zero, we can see that, even for BSs for which the
normalized time in SM state is more than 50% (e.g. BS 28 and
BS 19), the frequency is around 0.4 cycles/hour, suggesting
that these BSs are put in SM and then to active power several
times during a day. Additionally, Fig. 3 reports the AF for

each BS in the network for different values of AFoff , χ
off
ref .

Unless otherwise specified, W is set to 0.1. Interestingly, we
can see that the impact of AF is not the same for all BS in
the network, with some BSs that tend to steadily increase their
AF (e.g., the BS 28 has a maximum AF equal to 1.7, which
means a lifetime reduction of 70%), and others which instead
are able to decrease the AF. Thus, we argue the need of a wise
strategy in selecting the power state transitions considering the
single BSs lifetime.
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In the following, we consider the acceleration factor due
to the time spent in different power states (AFs) and the one
due to power state transitions (AFt). In this case, we consider

AFoff = 0.5, χoff
ref = 2 [h/cycle] and W = 0.1. Fig. 4 reports

the values of AFs and AFd, by differentiating also between
the amount due to radiated power and the one due to SM.
Interestingly, we can see that the BSs presenting the highest
total AF are also the ones having the highest AFt in SM,
which accounts for the frequency at which BSs enter/leave

SM, as well as the HW parameter χoff
ref . The values of AFs

on the contrary are always lower than one, due to the fact
that AFoff , AFi, τoff/T and τi/T , are always lower than
one. Moreover, we can see that the radiated power has a small
impact on AFt. However, for some BSs, the term AFt due to
the radiated power tends to bring the overall AF larger than 1,
which means a decrease in the lifetime.

In the last part of our work, we have considered how the
AF evolves over time. In particular, we have computed the
AF for each hour in the network, i.e., starting from 00:00
and computing the AF in the current hour considering the
power state variations occurred from 00:00 to the current
hour. Fig. 5 reports the AF evolution considering γoff = 0.5,
χoff = 2 [h/cycle] and W = 0.10. The figure reports two
BSs exploiting SMs (BS29,BS28) and one which is always
powered on (BS7). Interestingly, we can see that the network
AF is initially lower than one, then at 11 a.m. it becomes
higher than one. This suggests that the energy-aware algorithm
has initially decreased power of BSs as a consequence of
periods of low traffic. However, since user traffic increases
during the following morning hours, different BSs have to
change their power state. As a result, the lifetime in the
network is even decreased at the end of the day. Moreover,
the single BSs present very different trends, being for example
BS28 experiencing different power states during the day which
negatively impact its lifetime. Thus, we can conclude that
the management of power state transitions should not only
take into account the short-term objective of reducing current
energy (i.e., in each hour) but also the long term objective of
increasing the lifetime in the network.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a model to predict the lifetime in a
cellular network as a consequence of a change in the power
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Fig. 5. AF evolution vs. time with γoff = 0.5, χoff = 2 [h/cycle] and
W = 0.10.

states (either from/to SMs or a change in the radiated power).
Our results show that the lifetime may be negatively impacted
if the effects of power state variations are not properly taken
into account. This may lead to a decrease of lifetime for the
single BSs, or even for the whole network under consideration.
Moreover, since the lifetime is a long-term objective, i.e., it has
to consider sufficiently long time periods, short term-objectives
like energy minimization may clash with it. As future work,
we plan to propose algorithms that integrate lifetime, energy
consumption and user constraints in order to decide when and
how to change the power state for each BS in the network.
Moreover, we plan to measure the temperature of a BS to
estimate more precisely the HW input parameters.
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