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ABSTRACT Evaluation of motor evoked potential (MEP) signals elicited by transcranial magnetic stimula-
tion (TMS) over the motor cortex provide a measure of cortico-motor excitability at the time of stimulation.
In the research and clinical medical practice, the MEP latency is a relevant neurophysiological parameter
to determine conduction time for neural impulses from the cortex to peripheral muscles. State changes at
different levels of signal propagation through the neural tissue can significantly influenceMEP latency, based
on which different medical diagnoses can be issued. This study aims to present the Squared Hard Threshold
Estimator (SHTE), which is a novel and improved algorithm forMEP latency estimation. Analyses presented
in the paper were based on the SHTE algorithm, which was efficiently applied to a large number of MEP
signals recorded from hand muscles. The SHTE algorithm was compared with other prominent methods
such as the absolute hard threshold estimation (AHTE) algorithm, the statistical measures (SM) algorithm,
and manual assessment. Results obtained in terms of robustness test and statistical analysis show that the
proposed SHTE algorithm is reliable in estimatingMEP latency, especially for theMEP signals having peak-
to-peak (PTP) amplitudes lower than one hundredmicrovolts. Compared with the AHTE and SM algorithms,
the SHTE shows a lower percentage deviation index in MEP latency estimation of the MEP signals with the
PTP amplitudes lower than one hundred microvolts. Hence, the proposed SHTE algorithm represents an
improved armamentarium in automatic MEP latency estimation.

INDEX TERMS Biomedical signal processing, digital signal processing, latency, motor evoked potential,
transcranial magnetic stimulation.

I. INTRODUCTION
Since its introduction, which was more than thirty years
ago [1], transcranial magnetic stimulation (TMS) has been
extensively used as a non-invasive brain stimulation tech-
nique to explore cortical physiology in humans. In particu-
lar, single- and paired-pulse TMS protocols applied to the
human primary motor cortex (M1) have allowed the physi-
ological investigation of various intracortical inhibitory and
facilitatory networks and cortico-cortical connectivity. As of
recently, the TMS technique benefits from the integration
of individual magnetic resonance images (MRIs) using nav-
igation technology (navigated TMS or nTMS). The nTMS
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enables three-dimensional (3D) reconstruction of the brain
surface based on the positioning of the stimulating coil over
the M1 cortex and more precise electromyographic recording
of motor evoked potential signals (MEPs) from the target
muscles. Recording of MEPs allows measurement of corti-
cospinal tract motor conduction time as a valuable diagnos-
tic and investigation test in the routine practice of clinical
neurophysiology [2], preoperative neurosurgery of the brain
tumor surgery [3]–[7], epilepsy surgery [8]–[12], radiosur-
gical planning [13] or the surgical treatment of intracranial
arteriovenous malformations [14]. Thus, MEPs elicited by
TMS or nTMS over the human motor cortex provides a
quantification of cortico-spinal excitability at the time of
stimulation [15], [16]. The MEPs have been used and inter-
preted in several ways, each based on distinct assumptions
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concerning cortico-spinal, intra- and trans-cortical contribu-
tions to MEPs, respectively [17]. Firstly, MEPs are inter-
preted concerning the performance of actions (resting-state
vs. execution); secondly, to probe the physiology of the motor
cortex (i.e., pharmacological manipulations or investigation
of cortical excitability in the context of psychiatric or neu-
rological illnesses) and thirdly, to probe the physiology that
occurs outside of the M1.

The amplitude and the latency of the MEP signal
are the most used features for quantifying MEP signals
[17]–[19]. Although the MEP amplitude varies signifi-
cantly in patients with pathologies, as well as in healthy
subjects [18], [20]–[22], the peak-to-peak (PTP) ampli-
tude defined as the difference between the maximum and
minimum value of the MEP response, represents an accu-
rate indicator for estimating the MEP amplitude oscillation
[23]–[26]. On the other hand, the MEP latencies are con-
sidered more robust; however, MEP latency variability is
well known in neurosurgical patients [18], [27]. Furthermore,
in TMS protocols used for assessment of cortical inhibition
(i.e., long/short-interval intracortical inhibition (LICI/SICI)
or short-latency afferent inhibition (SAI)), suppression of
MEP amplitude is detected [28]. This can challenge MEP
amplitude detection and raise the problem of determin-
ing MEPs latency due to a higher signal-to-noise ratio.
Most of the MEP latency estimation algorithms suffer from
this problem, which significantly degrades detection pre-
cision, especially at the low PTP MEP signal amplitudes
(<100 µV) [23]–[26].

Additionally, suppose a large number of signals have been
collected in a clinic or research. In that case, it is essential
to have an algorithm that will automatize a reliable esti-
mate of such a large number of MEP signals, especially
low amplitude. For that reason, the starting hypothesis of
research presented in this work is that amplitude variability
in the MEP signals can be used for comparing the robust-
ness of individual algorithms dedicated to the estimation of
MEP latency. Therefore, in this article, a newly developed
algorithm named Squared Hard Threshold Estimator (SHTE)
is proposed. It can be used for estimating the latency of
MEP signals. The validation of the proposed algorithm was
performed comparing the efficiency of the SHTE algorithm
with other prominent algorithms and approaches based on
MEPs manual assessment. To summarise, this article has a
main contribution according to the following:
•We propose SHTE as a novel algorithm for MEP latency

estimation.
• We perform a comparison of the proposed SHTE algo-

rithm with other prominent MEP latency estimation algo-
rithms. The robustness test and statistical analysis results
show that the SHTE outperforms well-known algorithms in
terms of latency estimation accuracy for theMEP signals with
low amplitude.
• Based on the comparison results, it can be concluded

that the proposed SHTE algorithm represents an additional
method of choice in MEP latency analysis. SHTE can be

incorporated into clinical practice and research for faster and
more precise latency estimation of MEP signals.

II. RELATED WORK ON CONTEMPORARY MEP
LATENCY ESTIMATION ALGORITHMS
Previous medical studies show the variability of MEP laten-
cies in the neurosurgical population undergoing preoperative
nTMS mappings of the motor cortex [5], [18], [21]. The
results of these studies pointed to a wide range of clinical
factors (i.e., gender, height, age, drug intake, muscle-specific
factors, tumor side, tumor location) that may impact MEP
latency variability in nTMS motor mapping of brain tumor
patients. However, some of the findings related to specific
clinical factors on the MEP latency variability were not
clarified [18]. Furthermore, the possible differences in the
algorithms used to estimate the MEP latencies were also
not questioned in past studies, and potential differences in
latency computation impacted by the MEP signal amplitude
value [5], [18].

Some of the previous studies related to the MEP latency
estimation were based on measuring latency from the aver-
aged rectified MEP records [29], [30]. Currently, the avail-
able algorithms for latency estimation can be divided into
the following categories: algorithms based on absolute hard
threshold estimator (AHTE), which are commonly used in
devices of manufacturer Motometrics [23], and algorithms
based on statistical measures (SM), which are widely used
in devices of manufacturers Signal Hunter and CortexTools
[24]–[26]. According to our knowledge, this work, for the
first time, proposes a novel approach for estimating MEP
latencies based on MEP signal squaring. To clarify differ-
ences among the proposed MEP latency estimation approach
(SHTE), MEP estimation algorithms used by AHTE and SM
approaches are described in further sections.

A. AHTE ALGORITHM
The execution of the AHTE algorithm relies on the following
phases:

a. Load the MEP and set a local coordinate system with
the origin in the onset of the stimulus.

b. Perform an absolute operation on the MEP using the
following equation:

Vabs(MEP) = abs(x1, x2, . . . , xn) (1)

where x ∈ <m and n ∈ N+. xn is recorded MEP signal
obtained from the previous step.

c. Find maximal absolute amplitude Vabs(max), and deter-
mine the threshold valuewhich is commonly set on 10%
of Vabs(max), i.e., Vthr = 0.1 Vabs(max) where Vabs(max)
can be expressed with the following equation:

Vabs(max) = sup(|x1| , |x2| , . . . , |xn|) (2)

d. Mark ±10% level of Vabs(max) area around the mean
of the MEP signal and determine an index value (n0)
where the marked line crosses the MEP, i.e., at a first
intersection where they have the same value.
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e. Use calculated index value (n0) and subtract it from the
so-called magic number (mn), to obtain a time instance
as an estimation of the MEP latency (latMEP) according
to Eq. 3:

latMEP = t(n0 − nm) (3)

A magic number (mn) is defined as a number that has a
constant value, and it has to be subtracted from the index
value (n0) to determine the onset of MEP latency.

FIGURE 1. Estimation of MEP latency with the AHTE algorithm on two
MEP signals: (a) MEP from the APB muscle with a latency of 25.5 ms and
a PTP amplitude of 1.8 mV, (b) MEP from the APB muscle with a PTP
amplitude of 50 µV.

The presented AHTE algorithm is incorporated in the
software of manufacturer Motometrics and has the option to
change the threshold value Vthr [23]. In general, the AHTE
method yields good results in determining MEP latency
for the MEP signals with higher amplitudes. However,
Fig. 1 illustrates the potential problem in estimating the MEP
latency with the AHTE algorithm. Fig. 1 shows an example
of two MEPs evoked from the hand muscle after applying a
single magnetic stimulus to the M1. It is a typical MEP from
the abductor pollicis-brevis (APB) muscle, with a latency

of 25.5 ms and a PTP amplitude of 1.8 mV. The index
value (n0) is determined at the intersection of the MEP and
−Vthreshold dashed line, and the latency is estimated as a time
instant where the index value is subtracted from the magic
number [23].

Fig. 1b shows the MEP from the APB muscle with a
PTP amplitude of 50 µV. It can be observed that muscle
response spans from 25ms to 40ms. Due to neurophysiologic
processes in the human cortex and body, the activity from
0 ms to 25 ms and from 39 ms to 70 ms exhibits fluctuations
that can be described as signal (muscle) noise. If the AHTE
algorithm is applied, the index value (n0) calculated at the
intersection of the MEP and+Vthr in Fig. 1b can be wrongly
estimated in a presented practical example. More specifically,
instead of 25ms (Fig. 1a), the onset latency can be incorrectly
estimated to 1 ms (Fig.1b). Hence, in some instances, char-
acterized by noisy MEP signals, the MEP latency estimation
becomes a very challenging task, and it can be significantly
degraded in terms of accuracy.

B. ALGORITHMS BASED ON STATISTICAL MEASURES
Another approach used for the estimation of MEP latency
is based on statistical measures (SM) algorithm. In general,
the algorithms based on SM rely on the following steps:

a. Load the MEP signal and set a local coordinate system
with the origin in the stimulus onset.

b. Perform moving average (MA) filtering for signal
smoothing and noise reduction using the following
equation:

MA(n) =
1
WL
· (xn + xn−1 + . . .+ xn−(WL−1)) (4)

where MA(n) denotes the moving-average filtering of
a vector x. A moving-average filter slides a window
of length (WL) along the data and computes averages
of the data contained in theWL window size.

c. Differentiate the smoothed signal to get a vector Diff
with the following equation:

Diff = [x2 − x1, x3 − x2, . . . , xN − xN−1] (5)

where the elements of aDiff are the differences between
adjacent elements of the MEP. A vector Diff is a vector
of length N − 1, while the MEP signal has N elements.

d. Calculate the standard deviation (SD) of the differenti-
ated signal using the following equation:

SD =

√
1

N − 1
·

∑N

n=1
(xn − x̄)2 (6)

where x̄ is a mean value of the differentiated signal.
e. Set a threshold value to be equal to the value of SD

multiplied with a constant k , i.e., Vthr= k · SD.
f. Compare each absolute differentiated value with the

threshold value.
g. Estimate the MEP latency onset as an index value (n0),

where the differential value first exceeds the threshold
value and then subtract from a magic number (mn).
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FIGURE 2. Estimation of MEP latency using the SM algorithm for (a) MEP
signal with a PTP amplitude of 1.7 mV and latency of 27 ms, (b) MEP
signal with a PTP amplitude of 49 µV and with an estimated latency
of 1 ms.

For the case of the AHTE algorithm, the presented SM
algorithm also yields good results in estimating the MEP
latency for the MEP signals with higher PTP amplitudes
but lacks accuracy for MEPs of lower PTP amplitudes. The
reason can be found in the fact that on the lower PTP
amplitudes, the noise is not negligible and has a significant
impact on differentiation (step (c)). Then when applying the
steps (d), (e), and (f) of the SM algorithm, it is possible that
differentiated value can quickly exceed the thresholded value,
as shown in Fig. 2. Although this cannot happen on higher
PTP amplitudes due to the lower impact of noise, for lower
amplitudes, this process is illustrated in Fig. 2. Fig. 2a shows
a typical MEP signal (MEPAPB) that has a PTP amplitude
of 1.7 mV and a latency of 27 ms.

Additionally, Fig. 2a shows the MAMEP signal obtained
through moving-average filtering (step (b)) and the signal
DiffMEP derived from the differentiation process (step (c)).
According to Fig. 2a, the standard deviation (SD) among
signals after step (d) was 22.9 ms, and the threshold was set to
16.1 ms with k= 0.7. It can be observed that the MEP latency
is correctly estimated in the case of higher PTP amplitudes.

However, Fig. 2b shows the MEP signal with a lower PTP
amplitude of 49 µV and an estimated 1 ms latency. It can
be observed thatMAMEP and DiffMEP in Fig. 2b significantly
differ when compared with those for the high-amplitudeMEP
signal presented in Fig. 1a. Due to the described reasons,
the SM algorithm makes a false latency estimation for this
MEP signal. Also, a CortExTool [24], [25] is another appli-
cation that uses a similar approach for the MEP latency esti-
mation. It is based on taking all MEP signals and calculating
an average of signals to get a so-called MEP EMG tem-
plate [24]. A cross-correlation function between the prototype
and the MEP signal in question is applied to estimate the
MEP latency. However, the implemented cross-correlation
function does not eliminate the latency estimate problem for
low-amplitude signals.

Hence, all mentioned algorithms (AHTE and SM) give
a relatively accurate estimation of the MEP signal latency
with higher PTP amplitudes (exceeding 100 µV). However,
a lower estimation (precision) rate is documented for the
latency of the MEP signals with lower PTP amplitudes
(i.e., lower than 100µV) [18]–[22]. Therefore, there is a need
for a better algorithm that will improve the latency estimation
of MEP signals with lower PTP amplitudes. According to our
knowledge, this article, for the first time, proposes a novel
algorithm for improved detection of MEP signals having low
PTP amplitudes.

III. SQUARED HARD THRESHOLD ESTIMATION
According to the evaluation overview of algorithms presented
in the previous section (Section II), it is evident that nowadays
protocols in neuroscience research and clinical medical fields
(i.e., neurology, neurosurgery) are based on collecting and
processing a large number of MEP signal records with vary-
ing amplitudes [18]. Sometimes, MEPs with lower ampli-
tudes are not processed because the acquisition algorithms do
not recognize them, or they are treated as muscle noise or out-
liers. For that reason, in this work, a novel SHTE algorithm
is proposed to improve the MEPs latency estimation for PTP
amplitudes lower than 100µV. The block diagram presenting
the five main steps (phases) of SHTE algorithm execution is
shown in Fig. 3.

The first step of the SHTE algorithm execution is related
to the loading of recorded MEP signal from the database and
choosing the constraint parameters (Fig. 3). An example of
the loaded MEP signal is presented in Fig. 4. According to
Fig. 3., two constraint parameters are selected in the first
step (Fig. 4): the length of the MEP signal for processing in
the time domain (TWL) and the so-called dropout zone (TDZ )
parameter. Fig. 4 shows that in the time domain, the length
of the analyzed MEP spans from the onset of the stimulus
(where the local coordinate system is set to 0 ms), to the end
of the window length TWL . In the presented analyses, the TWL
is set to 70 ms. The selection of TWL value is justified through
experimental analysis of many MEPs, as the time window
within which all MEPs can be recorded. The dropout zone
is a region that spans from the onset of the stimulus to the
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FIGURE 3. Proposed execution of the SHTE algorithm.

value of the predefined time TDZ (Fig. 4). The value of TDZ
is selected as a measure that contributes to the increase of the
latency estimation accuracy. The TDZ is set to 19 ms due to
the normative data defined for the MEP latency of the distal
muscles [2]. Also, based on the results presented in [2], it is
assumed that the mean MEP latency for the APB and first-
dorsal interosseous (FDI) muscle is 20.8 ± 1.5 ms.

FIGURE 4. Loading the MEP signal and setting a local coordinate system.

In the second step of the algorithm execution, all ampli-
tudes (coefficients) from the MEP signal are squared to get a
squared coefficient (XMEP) (Fig. 3).

Furthermore, in the third step of the algorithm execution,
the following two operations are performed (Fig. 3): obtain-
ing the maximal amplitude Xmax of squared XMEP signal
and determining a threshold value Xthr through finding a
10% of Xmax .

The fourth step of the algorithm execution performs the
operation of finding an index value (n0), which is defined as
the signal level where XMEP and Xthr are of the same value
(Fig. 3). Since there are several instances where XMEP and
Xthr have the same value, and a minimum value is chosen as
an index value.

To get an estimate of theMEP latency, in the last step of the
SHTE algorithm execution (Fig. 3), the following procedures
are performed: subtract the magic number (mn) from the
index value and find a time instant t(n0-mn) for obtaining an
estimate of XMEP latency. Since squaring the coefficients of
the MEP signal in the time domain have no impact on the
MEP signal latency, it can be concluded that the estimated
latency of the squired coefficient XMEP is the same as the
original MEP signal latency, i.e., latMEP = latX .

A. SHTE ALGORITHM
The performance characterization of the proposed SHTE
algorithm with the mathematical backgrounds will be given
on an arbitrary selected MEP signal presented in Fig. 1b. The
proposed algorithm is executed in the following five steps
(Fig. 3):

a. Load MEP and set a local coordinate system with the
origin in the onset of the stimulus (Fig. 4).

b. Square all coefficients to obtain the squared coefficient

XMEP = (x21 , x
2
2 , . . . , x

2
n ) (7)

where x ∈ <m, and n ∈ N+ what results with a squared
signal (XMEP), as presented in Fig. 5.
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FIGURE 5. Squaring the MEP signal.

FIGURE 6. Finding the maximal amplitude and determining the threshold
stripe.

c. Find the maximal amplitude of squared coefficients
using the following relation

Xmax = sup(XMEP) = sup(x21 , x
2
2 , . . . , x

2
n ) (8)

and then determine 10% of maximal amplitude (Xmax)
threshold value (Xthr ) such that

Xthr = 0.1 · Xmax (9)

The results of the performed signal processing
procedure are shown in Fig. 6.

d. Find an index value (n0) where the threshold value
(dotted line in Fig. 7) and the squared signal line are
intersected and have the same value such that

Xthr = XMEP(n0) (10)

The results of the process related to determining the
index value are presented in Fig. 7. After performing
the operation defined with (10), it can be seen that there
are several intersection points. The index value iv is

FIGURE 7. Determining the index value n0.

FIGURE 8. Finding the latency of the squared signal.

obtained by performing the next operation

iv = inf(n0, n1, n2, n3) (11)

were n0, n1, n2, n3 are the indices of intersections on
the time axis. In this example, the selected index value
is equal to n0.

e. In order to find a time instant as an estimation of the
latency of the squared signal, use the calculated index
value (n0) and subtract it from the magic number (mn)
in order to be

latXMEP = t(n0 − mn) (12)

The results of the performed process related to find-
ing the squared signal’s latency are shown in Fig. 8.
According to the presented results, the latency of the
MEP signal (Fig. 9) is the same as the estimated latency
of the squared signal (Fig. 8).

Compared with other prominent algorithms, the novelty of
the SHTE algorithm lies in squaring the amplitude of the
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FIGURE 9. Overlapped the original MEP and squared the SHTE signal.

MEP signal (Fig. 5). Such squaring of theMEP signal ensures
that the original signal coefficients’ operations are trans-
formed in the domain with squared coefficients. According to
Fig. 8, higher PTP amplitudes that correlate withMEPmuscle
response time (from 25.5 ms to 40 ms) become distinctively
greater (squared) than the squared amplitudes of the rest of
the signal (the noise from 0 ms to 25.5 ms and from 40 ms
to 70 ms). Also, applying the thresholding operation on a
squared signal leads to a faster algorithm execution. This
is a consequence of necessity related to finding only one
threshold (a positive dashed line in Fig. 7), and no execution
time is needed for the detection of the other part of the MEP
signal related to the negative threshold value. At the same
time, working with squared coefficients (Fig. 7 and Fig. 8)
does not change the onset of the latency of an original MEP
signal (Fig. 9).

IV. EXPERIMENTAL PROCEDURE FOR MEP
SIGNAL ACQUISITION
Experimental evaluation of the proposed algorithm has been
performed with the nTMS system (Nexstim NBS System 4 of
the manufacturer Nexstim Plc.) on MEP signals collected
from our recently published study investigating SAI phenom-
ena of the motor cortex [31]. The SAI was investigated by a
paired-pulse paradigm in which the electrical stimulation to
the median nerve at the wrist is followed by single magnetic
stimulation of the M1 with inter-stimulus intervals (ISIs) of
19 ms - 28 ms. The interval between the two magnetic pulses
was 5 s. The control condition included magnetic stimulation
over the M1 without conditioning electrical pulse.

The sample of 889 MEP signals was randomly pulled
from the study [31], consisting of the control and ISIs con-
dition. The MEP signals were acquired in 19 right-handed
subjects (mean age 40.35±14.4 SD) [31], [32]. In Fig. 10,
an experimental procedure for obtainingMEP signals is illus-
trated. The MEPs were recorded from two hand muscles

(APB and FDI). The intensity of magnetic stimulation for the
control condition was 120% of the resting motor threshold
(RMT) intensity, and at ISIs between 19 ms and 28 ms,
magnetic stimulation intensity was also 120% of the RMT.
The control condition at ISIs included ten trials for each
subject. The lowest stimulation intensity used to elicit at
least five positive MEP responses out of ten trials having
PTP amplitudes larger than 50 µV, was defined as the RMT
intensity [2].

The MEPs were recorded with a pair of self-adhesive
surface electrodes (Ambu R©Blue Sensor BR, BR-50-K/12
of manufacturer Ambu A/S) in a belly-tendon montage
(Fig. 10). Electrodes were attached to the electrode cable of
the Nexstim EMG with a 1.5 mm touch-proof female safety
connector (DIN 42-802) and connected to a 6-channel EMG
and one common ground EMG amplifier (external module)
with TMS-artefact rejection circuitry. The EMG is an inte-
grated part of the nTMS device.

TABLE 1. Values of experimental parameters used for MEP signal
acquisition.

Table 1 presents the characteristics of the EMG with
parameters of the magnetic and electrical stimulation. Elec-
trical stimuli consisted of single pulses (of 200 µs dura-
tion) (Table 1) applied through a stimulating electrode to the
median nerve applied at the wrist of the right hand (Fig. 10).
The stimulating bar electrode (manufactured by ADInstru-
ments) had flat disks and the 30 mm spacing of 9 mm con-
tacts of the anode which was positioned distally. For median
nerve stimulation, the ISIs Neurostimulator (version 1.0.2.0.
of manufacturer Inomed Medizintechnik GmbH) was used to
ensure constant current stimulation.

Before nTMS experiment, the MRI of the head for
each subject was performed with Siemens Magnetom Area
(of the manufacturer Siemens Healthcare GmbH) having Tim
(76 × 18) of strength 1.5 T. MRI images were used for the
3D reconstruction of individual brain anatomy (3D optical
tracking unit of the manufacturer Polaris R©Vicra) [33]. With
the subject comfortably seated, the MRI is co-registered to
the subject head using the tracking system with Nexstim
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FIGURE 10. The procedure of the TMS experiment for collecting MEP signals.

unique forehead tracker. When resting the coil against the
subject head, the electric field is overlaid on the 3D model
of the brain. As the coil is moved, the magnitude (V/m)
and orientation of the electric field relative to the cortex are
dynamically calculated and displayed in real-time. The eight-
shaped magnetic coil was used, generating a biphasic pulse
having a length of 289 µs (Fig.10, Table 1). The coil with
an inner winding diameter of 50 mm and an outer winding
diameter of 70mmwas placed tangentially to the subject skull
over the M1 (Fig. 10). The maximum strength of the electric
field measured 25 mm below the coil in a spherical conductor
model representing the human head was 172 V/m [34].

The direction of the coil orientation over the precentral
gyrus and stimulation sites is presented in the top left part
of Fig. 10, for the left M1 of the single-subject APB muscle.
The central sulcus is depicted in the red color line on the
upper left part of Fig. 10. The top right and bottom right
in Fig. 10 shows the TMS coil located tangentially to the
skull over the left M1. A time changing current in the coil
generates a time changing magnetic field, which induces an
electric field that depolarizes the upper motor neurons with
corticospinal efferents. This action potentials from the upper
motor neurons excite the lower motor neurons in the spinal
cord (Fig. 10), whose action potentials travel through the
peripheral nerves to the target muscles in the form of MEP
signals.

The SAI approach enables suppression of amplitude
of MEP signals when the median stimulation precedes

a magnetic stimulation applied to the motor cortex, which
results in SAI [28], [35]. In the present study, to obtain a
robust sample of signals for the SHTE algorithm validation,
the SAI protocol was chosen for the collection ofMEP signals
with variable PTP amplitudes.

The factors such as the cleanliness of the skin, usage of
the disposable electrodes, etc. that might interfere with MEP
characteristics (such as noise) during nTMS mapping were
minimized [1], [28].

V. SHTE ALGORITHM VALIDATION
The following procedure was conducted to validate the SHTE
algorithm. The three algorithms (SHTE, AHTE, and SM)
were compared in terms of performance. Also, SHTE, AHTE,
and SM algorithms were validated with the manual assess-
ment, being the reference method in estimating MEP latency.
Hence, in total, the amplitude and latency of 889 MEP sig-
nals were estimated with SHTE, AHTE, and SM algorithms
and manually with the custom-made script written in Mat-
lab 2019a. The MEP signals acquired from APB and FDI
muscles were analyzed jointly since the same median nerve
innervates both muscles. It is reasonable to assume that a
sample of 889 MEPs (551 from APB and 338 from FDI) of
different PTP amplitude ensures a robust and relevant sample
for performing reliable analyses.

A. STATISTICAL DATA ANALYSES
Statistical data analysis was performed in the following man-
ner to validate the SHTE algorithm. The 889 MEP signals
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were grouped into two amplitude bands. More specifically,
MEP signals with a PTP amplitudes from 0 µV to 100 µV
(denoted as Vpp < 100 µV) and MEP signals with a PTP
amplitude above 100 µV (marked as Vpp > 100 µV).
Among 889 MEP signals, 388 MEP signals were grouped in
Vpp < 100 µV amplitude band and the remaining 501 MEP
responses were grouped in Vpp > 100 µV amplitude band.
Additionally, 388MEP signals with Vpp < 100µVhave been
divided into two amplitude bands: 132MEP signals with PTP
amplitude from 0 µV to 50 µV (denoted as Vpp < 50 µV)
and 256 MEPs with PTP amplitude from 50 µV to 100 µV
(marked as 50 µV > Vpp < 100 µV).
The post hoc G power test was performed to determine

does such amplitude band grouping was adequate for two-
way analyses of variance (ANOVA). G power for amplitude
bands Vpp <100µV and Vpp > 100µV, as well as for Vpp <

50µV and 50 µV > Vpp < 100 µV was 0.9. The post hoc G
power test results show that the estimated power confirmed
the adequacy of MEP signal grouping in each PTP amplitude
band.

Then, the statistical data analysis was conducted using the
STATISTICA 12 tool (of manufacturer StatSoft Inc.). For
statistical data analyses, a Student t-test with independent
samples was used to determine if two examiners differ in
their manual estimation of MEP latency. The ANOVA was
conducted to test the differences in MEP latency values for
Vpp <100 µV, Vpp >100 µV, Vpp <50 µV, and 50 µV >

Vpp < 100µV amplitude bands for four different approaches
(SHTE, AHTE, SM, and manual estimation). The percentage
deviation index (PDI) measure was used to evaluate and
compare the efficiency of SHTE, AHTE, and SM algorithms
in MEP latency estimation. For calculating PDI, the aver-
age expert’s assessment (manual assessment expressed as
latman) of MEP latency was used as a reference for expressing
PDI as

PDI [%] =
|latSHTE/AHTE/SM − latman|

latman
· 100 (13)

were latSHTE/AHTE/SM denotes estimated MEP latency by
SHTE, AHTE or SM algorithm, respectively.

To determine if SHTE, AHTE and SM distinguish from
the manual assessment of two examiners in the process of
MEP latency estimation, two-way ANOVA was used on PDI
results with two amplitude bands, more specifically PTP
amplitude bands Vpp < 100 µV and Vpp > 100 µV, and
PTP amplitude bands Vpp < 50 µV and 50 µV > Vpp <

100 µV, respectively. In the frame of the two-way ANOVA
method, F-tests were used to statistically test the effect of the
independent variables (used methods and MEP amplitudes)
on the expected outcome (PDI values). Also, analyses take
into account the effect of independent variables and their rela-
tionship to the outcome itself. F-test statistic presents a ratio
of two variances, which is a measure of dispersion, or how
far the data are scattered from the mean value. In the case of
significant depressions, the Fisher Least Significant Differ-
ence (FLSD) post hoc test was calculated. The distinction was

considered statistically significant when difference probabil-
ity p is equal to p<0.001. In the Results and Discussion
sections, these descriptive statistics were displayed in the
form of arithmetic mean, SD, and minimal and maximal
divergence percentages.

FIGURE 11. An example of a typical MEP signal with the magnification of
the latency onset area.

B. MANUAL ASSESSMENT APPROACH
Two facts have been taken into account when comparing
SHTE, AHTE, and SM with the manual assessment. First,
a manual evaluation based on an expert assessment is a con-
tinuous process for the MEP signal latency estimation. For
example, Fig. 11 shows theMEP signal and themagnification
of the latency onset area. An expert assessment of the MEP
signal latency can be between the two samples (marked as
‘‘X’’ in the magnified part of Fig. 11), and hence, an expert
can estimate the MEP latency at any point on the MEP signal.
On the contrary, the estimation performed by each algorithm
is based on MEP samples, which were recorded as discrete
samples (red circles in Fig. 11) with a sampling frequency
Fs of 3 kHz. Therefore, some uncertainty when dealing with
the MEP latency estimation also exists in the time domain.
Such uncertainty, which is called accuracy region (AR) is
equal to a certain number of samples around the ‘‘true’’
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value assessed manually (presented with the two green dotted
circles in Fig. 11).

For example, for Fs = 3 kHz, the time resolution (1t)
between the two samples is equal to 0.33 ms (1t = 0.33 ms).
This means that AR between manual latency estimation and
an algorithm estimation can have at least 0.33 ms error, which
is equivalent to AR of one sample (AR1). Taking into account
that the SD between the experts performing manual assess-
ment was 0.54 ms, for estimating uncertainty in performance
assessment, the value of two SDs was taken as a measure
of AR. This means all estimated latencies (by algorithms)
in the AR are around 1.1 ms, which equals to 3.27 samples
((2 · SD)/1t). This explains why AR was set to three samples
(next larger integer number), and this value of samples (AR3)
is used as an AR value that assumes estimated latencies
accurate (Fig. 11).

C. SELECTION OF MAGIC NUMBER
The selection of a magic number (mn) also represents an
important factor in achieving satisfactory estimation accu-
racy. The magic number (mn) is a constant number that must
be subtracted from the index value (n0) when determining
the onset of MEP latency. The following methodology was
used to determine the magic number. From the origin of the
MEP signal, time instances corresponding to the point of 10%
and 20% of Vmax were determined. Then, the least squared
method was applied to substitute the portion of the signal
with a linear, quadratic or exponential polynomial. Following
the calculation of r-squared and adjusted r-squared measures,
the best fit polynomial was determined. After determining the
polynomial that best fits the MEP signal’s portion, the exact
number of samples between them was counted and sub-
tracted, determining the onset of the MEP signals.

Performed analyses show that the magic number lies
between four and six samples, and for testing the AHTE algo-
rithm, it was set to five samples. Since the SHTE algorithm
transforms MEP signal coefficients into squared signal coef-
ficients, there is a difference of 31.6% between a ‘‘regular’’
and ‘‘squared’’ domain. This difference corresponds to the
value of magic number equal to 6.6, and due to the necessity
of selecting the next highest integer value, it is set to seven for
the analyses. Hence, the proposed SHTE algorithm subtracts
seven samples from the index value to determine the MEP
signal’s onset and then finds the time instance to estimate the
latency.

D. ROBUSTNESS TEST
Besides statistical data analysis, the robustness test was per-
formed, and a number of hits (NOH) were used as a measure
for validating the SHTE algorithm. The NOH represents the
number of correctly MEP latency estimations among the total
number of MEP signals in the specific amplitude band. The
equation used for the NOH measure is:

NOH [%] =
number of hits

total number of signals in ampl.band
(14)

The NOH analysis is performed as a complement to a robust-
ness test since the NOH analysis arises directly from the
robustness analysis. The robustness test for SHTE, AHTE,
and SM algorithms is performed in two phases. First,
889 MEPs are divided into two amplitude bands, the ampli-
tude band with Vpp < 100 µV and the amplitude band
with Vpp > 100 µV. Second, out of the total number of
MEPs in each amplitude band, ten groups are created. More
specifically, each group forms 10% of the total number of
MEP signals of that group up to 100% of the total number
of MEP signals. Each group consists of the 30 sets of ran-
domly collected MEPs from the observed amplitude band.
For each measurement, the MEP latency from AR1 to AR5 is
estimated for all three algorithms (SHTE, AHTE, and SM).
Then, from AR1 to AR5 for each group, an average NOH is
calculated. All data are presented as percentage values.

Finally, for each algorithm, measures such as minimum
NOH value of all groups (Min.), maximum NOH value of
all groups (Max.), total NOH average of all groups (Average)
and standard deviation of NOHs for all groups (SD) are deter-
mined. In addition, the time execution of SHTE, AHTE, and
SM algorithms were assessed. First, 410 MEP signals were
randomly collected. Then, the execution of each algorithm
was performed sequentially in 15 series. Finally, the average
execution time of each algorithm was calculated.

TABLE 2. Mean values (±SD) of MEP signal latency for AHTE, SHTE, SM
algorithms, and manual assessment in different amplitude bands.

VI. RESULTS
Obtained results indicate no significant differences between
manual examiners when estimating MEP latency (t = 1.13,
p > 0.05). Therefore, the examiners assessment values were
averaged, and mean values are used in the further analysis as
benchmark parameters of manual assessment results. Statis-
tics of MEP latency in two amplitude bands (Vpp < 100 µV
and Vpp > 100 µV) for SHTE, AHTE, SM algorithms, and
manual assessment methods are presented in Table 2.

In Fig. 12, the PTP amplitude distribution of 889 MEP
signals divided into two amplitude bands, Vpp < 100 µV
(Fig. 12a) and Vpp > 100 µV (Fig. 12b) are presented.
Fig. 12 shows the normal distribution and skewness trends of
PTP MEP signal amplitudes for these two amplitude bands.
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FIGURE 12. MEP PTP amplitude distribution of 889 signals for:
a) amplitude band Vpp < 100 µV (N<100µV = 388), b) amplitude band
Vpp > 100 µV (N>100µV = 501).

Significant differences were found between MEP signals
with Vpp < 100 µV and Vpp > 100 µV (t = −21.08,
p < 0.001∗). Additionally, ANOVA results for MEP signal
latencies indicate notable differences concerning amplitude
bands and signal processing methods (Famplitude = 304.3,
p< 0.001∗; Fmethod = 384.6, p< 0.001∗; Finteraction = 398.1,
p < 0.001∗). The Fisher LSD post hoc test further revealed
differences between SHTE and AHTE (p < 0.001∗) and
SHTE and SM algorithms (p < 0.001∗) for MEP amplitudes
with Vpp < 100 µV. Also, differences in SM and manual
assessment (p < 0.001∗), as well as in AHTE and manual
assessment for MEP amplitudes with Vpp < 100 µV have
been observed. Hence, results indicate significantly lower
MEP latency of of SM algorithm when compared with man-
ual estimation, SHTE algorithm, and AHTE algorithm, for
MEPs with Vpp < 100 µV.
Furthermore, Table 3 and Fig. 13 present the PDI results

for the AHTE, SHTE, and SM algorithms and manual assess-
ment for Vpp < 100 µV and Vpp > 100 µV PTP amplitude
bands. The two-way ANOVA was conducted for PDI of
MEP latency using manual assessment as a reference point.
Obtained results of F-tests and Fisher’s LSD post hoc tests
(Fmethods = 450.7, p < 0.001∗; Famplitude = 531.3, p <
0.001∗; Finteraction = 394.2, p < 0.001∗; post hoc SM-ATHE
< 100 µV, p < 0.001∗; SM-SHTE < 100µV, p < 0.001∗;
AHTE-SHTE < 100 µV, p < 0.001∗) confirm the statistical

TABLE 3. Mean percentage deviation index (PDI) and standard deviation
(SD) of mep signal latency estimation for shte, ahte, and sm algorithms.

FIGURE 13. The percentage deviation of MEP latency estimation for SHTE,
AHTE, and SM algorithms compared to manual assessment for the
889 MEP signals divided into two PTP amplitude bands (Vpp<100 µV and
Vpp > 100 µV).

difference of PDI mean values. Compared to other algo-
rithms, the SHTE has the lowest mean values in amplitude
range from 0 µV – 100 µV (denoted as Vpp < 100 µV)
(Table 3). This confirms the SHTE algorithm stability in
detecting MEP latency for the MEP signals with PTP ampli-
tude lower than 100 µV (Vpp < 100 µV).
Table 4 presents the results of NOH and robustness test

for MEP latency estimation of SHTE, AHTE, and SM algo-
rithms in Vpp <100 µV and Vpp >100 µV amplitude
bands. Table 7 to Table 18 in the Appendix present the
results of robustness testing of SHTE, AHTE, and SM algo-
rithms for MEP latency estimation in each amplitude band:
Vpp <50 µV (Tables 7-9 in the Appendix), 50 µV >

Vpp < 100 µV (Tables 10-12 in the Appendix), Vpp <

100 µV (Tables 13-15 in the Appendix), and Vpp > 100 µV
(Tables 16-18 in the Appendix). The robustness test in the
amplitude band Vpp <100 µV is performed for 388 of MEPs
(Tables 13-15 in the Appendix). Therefore, the sample size
was varied from 39 MEP signals (the 10% of all 388 MEP
signals) to 388 MEPs (the 100% of 388 MEP signals). From
Table 4, it can be seen that the SHTE and AHTE algorithms
perform robustly in all ARs, while the SM algorithm per-
forms robustly in AR1, AR3, and AR4, and less robustly
in AR2 and AR5. For example, in AR2, the SM algorithm,
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TABLE 4. Results of the robustness tests for MEP signal latency estimation on SHTE, AHTE, and SM algorithms in PTP amplitude bands VPP < 100 µV and
VPP > 100 µV.

on average, has a score of 29.7 (±0.7, SD)% NOHs with the
minimum and maximum NOH values of 28.2% and 30.6%,
respectively. This means that the SM algorithm can usually
correctly estimate two out of ten MEP latencies. It could
accurately estimate an additional MEP latency in some very
rare cases, i.e., it could accurately estimate three out of ten
MEP signal latencies. If another solution space, i.e., when
the AR3 is examined, it can be seen that the SHTE algorithm
outperforms AHTE and SM algorithms in terms of accurate
MEP signal latency estimation. On average, the SHTE has
six out of ten, while both the AHTE and SM algorithms
have three out of ten correct MEP signal latency estimates.
It can be seen that analyzed algorithms perform robustly in
AR3, regardless of varying the number of sample size. Also,
compared with AHTE and SM, the SHTE algorithm scores
even better if the AR is expanded. For instance, in the AR5,
the SHTE has seven out of ten correctly estimated MEP
latencies, while the AHTE and SM have four out of ten
accurately estimated latencies.

To summarize, the SHTE outperforms AHTE and SM
algorithms in terms of accuracy of MEP latency estima-
tions in the PTP amplitude band VPP < 100 µV. Further-
more, in the amplitude band Vpp >100 µV, the robustness
test is performed on the sample size of 501 MEP signals
(Tables 16-18 in the Appendix). From Table 4, it can be seen
that the SHTE and SM perform robustly over all ARs, while
the AHTE performs robustly over AR2, AR4, and AR5, and
less robustly on AR1 and AR3. If AR3 is examined, all three
algorithms correctly estimate eight out of ten MEP signal
latencies. However, sometimes the AHTE could accurately
estimate an additional MEP latency (see Table 17 in the
Appendix), due to the max. value on NOHs that is 90.3%.
On average, the SHTE scores 88.4 (±0.3, SD)% NOHs,

TABLE 5. NOH results on SHTE, AHTE and SM algorithms for MEP signal
latency estimation of all MEP PTP amplitudes.

the AHTE scores 89.8 (±0.4, SD)%NOHs and the SM scores
85.6 (±0.3, SD)% NOHs. If the AR1 is observed, the AHTE
despite the average NOHs of 70.0 (±0.5, SD)% could cor-
rectly estimate one less MEP latency (min. NOH value is
69.0%), when the sample size is 151 or 301 MEP signals
(Table 17 in the Appendix). Hence, all analyzed algorithms
work well for the amplitude band Vpp >100 µV in AR3 as
the solution space. NOH performance of SHTE, AHTE, and
SM algorithms in MEP latency estimation for all MEP PTP
is shown in Table 5.

To estimate the NOH performance of SHTE, AHTE, and
SM algorithms for all MEP PTP amplitudes (Table 5), the fol-
lowing analysis was performed. For the amplitude bands
Vpp <100 µV and Vpp >100 µV, approximately the same
number of MEP signals are chosen. The robustness test has
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TABLE 6. Results of the robustness test for MEP latency estimation on SHTE, AHTE, and SM algorithms in amplitude bands Vpp < 50 µV and
50 µV > Vpp < 100 µV.

been performed with 311 MEP signals for the amplitude
band Vpp <100 µV, and the average NOHs are calculated.
Also, the same test was performed with 301 MEP signals
in the amplitude band Vpp >100 µV. Then, the results
obtained from both amplitude bands are used to create the
NOH table in MEP signal latency estimation for all MEP
PTP amplitudes. From Table 5 can be seen that there was a
total of 612 MEP signals. Due to the fact that the robustness
test was performed, a total of 889 MEP signals were used to
determine the performance of all three algorithms. It can be
observed that the SHTE algorithm has the best MEP latency
estimation in all ARs. For example, if AR3 is examined,
on average, the SHTE accurately estimates seven out of ten
MEP signal latencies (75.4% NOHs), while the AHTE cor-
rectly estimates six out of ten MEP latencies (62.7% NOHs).
Furthermore, the SM accurately estimates five out of tenMEP
latencies (59.5% NOHs).

Statistics of MEP latency analyses in amplitude bands
Vpp <50 µV and 50 µV > Vpp < 100 µV for SHTE,
AHTE or SM algorithms and manual assessment methods
are presented in Table 6. In Fig. 14a and 14b, the MEP
PTP amplitude distribution of 388 signals divided into two
amplitude bands (Vpp <50 µV and 50 µV>Vpp < 100 µV)
is presented. Also, Fig. 14 shows the expected normal dis-
tribution curve of PTP MEP signal amplitudes for these two
amplitude bands.

Furthermore, Table 3 and Fig. 15 present the PDI results
for validation of the AHTE, SHTE, and SM algorithms
regarding manual assessment in Vpp <50 µV and 50 µV
> Vpp < 100 µV amplitude bands. The two-way ANOVA
was conducted for PDI of MEP latency using manual
assessment as a reference point. Obtained results of F-tests

FIGURE 14. MEP PTP amplitude distribution of 388 signals for: a) 50 µV <
Vpp amplitude band (NVpp<50µV = 132), b) 50 µV > Vpp < 100 µV
amplitude band (N50µV>Vpp<100µV = 256).

and Fisher’s LSD post hoc tests (Fmethods = 568.1, p <
0.001∗; Famplitude = 22.6, p < 0.001∗; Finteraction = 12.1,
p < 0.001∗; post hoc SM-ATHEε[50−100]µV, p < 0.001∗;
SM-SHTEε[50−100]µV, p < 0.001∗; AHTE-SHTE>50µV,
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FIGURE 15. The percentage deviation of MEP latency estimation for SHTE,
AHTE, and SM algorithms compared to manual assessment for the
388 MEP signals divided into two PTP amplitude bands (Vpp < 50 µV and
50 µV > Vpp < 100 µV).

p < 0.001∗; AHTE-SMε[50−100]µV, p < 0.001∗; SHTE-
SM>50µV, p < 0.001∗) confirm the statistical difference of
PDI mean values. Accordingly, SHTE has the lowest PDI
mean values in amplitude range Vpp < 50 µV and 50 µV >
Vpp < 100 µV (Table 3).
Table 6 presents the NOH and robustness test results for

MEP signal latency estimation of SHTE, AHTE, and SM
algorithms in Vpp < 50 µV and 50 µV > Vpp < 100 µV
amplitude bands. According to Table 6, in the amplitude band
Vpp < 50µV, the SHTE algorithm performs robustly in AR1,
AR2, AR4, and AR5, and less robustly in AR3. The AHTE
algorithm performs robustly in AR2, AR3, and AR4, and less
robustly inAR1 andAR5. Finally, the SMalgorithm performs
robustly in all ARs. For instance, in AR3, the SHTE, on aver-
age, scores 41.0 (±0.9, SD)% NOHs with the maximum
and minimum values of 38.8% and 42.2%, respectively. This
means the SHTE accurately estimates four out of ten MEP
signal latencies in AR3 when the number of samples exceeds
40 MEP signals (see Table 7 in the Appendix). However,
the AHTE and SM algorithms accurately estimate one out
of ten MEP latencies in AR3, regardless of the sample size
(Table 8 and Table 9 in the Appendix).

If the PTP amplitude band 50 µV > Vpp < 100 µV
of analyzed MEP signals is observed, it can be seen that
the SHTE algorithm performs robustly over all ARs, while
the AHTE performs less robustly in AR3 and AR4 and the
SM algorithm performs less robustly in AR4. On average,
the SHTE algorithm accurately estimates seven out of ten
MEP latencies in terms of NOH tests. Compared with AHTE
and SM algorithms, accurate estimation is performed for four
out of ten MEP latencies on average. Furthermore, the AHTE
for the sample size of 26 samples (10% of 256 MEP signals,
Table 11 in the Appendix) accurately estimates five out of ten
MEP latencies.

Hence, the results presented in Table 6 confirm that the
SHTE algorithm outperforms AHTE and SM algorithms
in lower amplitude bands (50 µV > Vpp < 100 µV).

TABLE 7. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band Vpp < 50 µV for SHTE algorithm.

TABLE 8. Results of testing the robustness procedure for MEP Signal
Latency estimation in amplitude band Vpp < 50 µV for AHTE algorithm.

Finally, measuring the execution time for SHTE, AHTE, and
SM algorithms result in the average execution time of 14.2ms
(11.2/15.3 ms, min./max), 21.1 ms (17.3/22.2 ms, min./max),
and 17.6 ms (15.5/19.0 ms, min./max), respectively. This
confirms the possibility of real practical implementation of
the SHTE algorithm.

VII. DISCUSSION
It is to emphasize that performing a squaring operation
on the MEPs coefficients brings the following benefit in
using the SHTE algorithm. The SHTE and AHTE algorithms
have the same procedure for determining the threshold value
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TABLE 9. Results Of Testing The Robustness Procedure For MEP Signal
Latency estimation in amplitude band Vpp < 50 µV for SM algorithm.

(i.e., finding 10% of Vmax in the case of the AHTE (Figure 1)
and finding 10% of Xmax in the case of SHTE (Figure 6)).
However, in the case of the SHTE, 10% of Xmax transforms
in 31.6% of Vmax of the AHTE algorithm. When the thresh-
old value is changed above 10% of Vmax , this can produce
more samples between the start of the MEP and the crossing
threshold line. Since triggered MEP could have some local
maximum(s) and/or minimum(s) between the starting point
and Vmax , theMEPsmorphological structure could contribute
to the estimation error. Hence, the morphological structure of
the MEP plays an important role in determining the starting
point. More samples mean that there are more points to shape
potential local minimum(s) and maximum(s). Lowering the
threshold value leads to the better determination of the magic
number, but at the same time reduces the latency estimation
accuracy of the MEP signals with amplitudes lower than
100 µV (due to so-called ‘‘muscle noise’’). Also, by exploit-
ing the same threshold calculation (equal to 10 % of the
maximum amplitude of squared coefficients), the proposed
algorithm ensures the same magic number as an important
value in estimating the MEP latency signal. This contributes
to the improvement of the algorithm execution performance
and reliability.

In this study, we compared the SHTE algorithm with algo-
rithms based on AHTE, the SM, and manual assessment as
the reference. Obtained results show that the SHTE algorithm
had similar achievements in the MEP latency estimation of
all MEP signals on the entire amplitude bands level. When
considering the MEP signal’s specific amplitude band, the
differences in the assessment ofMEP latency among the algo-
rithms are observed. This is especially confirmed for the
estimation of MEP signal latencies having amplitudes lower
than 100 µV. In this case, the SHTE algorithm outperforms
AHTE and SM forMEP signal latency estimation. This is also

TABLE 10. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band 50 µV > Vpp < 100 µV for SHTE
algorithm.

TABLE 11. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band 50 µV > Vpp < 100 µV for AHTE
algorithm.

confirmed with the results obtained for the robustness test
and NOH. The PDI results additionally prove the differences
in validating methods for different MEP amplitude bands.
Compared to other tested algorithms, SHTE has a lower PDI
in estimating the MEP latency of the MEP signals with the
PTP amplitudes lower than 100 µV (Vpp <100 µV and
50 µV > Vpp < 100 µV). Hence, the obtained results
confirm the possibility of implementing the proposed SHTE
algorithm for clinical and research purposes.

To increase the chances to elicit a more robust sample of
MEP responses, the approach used in this work was based on
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TABLE 12. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band 50 µV > Vpp < 100 µV for SM
algorithm.

TABLE 13. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band Vpp < 100 µV For SHTE algorithm.

exploiting the SAI protocol. Due to variable PTPMEP ampli-
tudes, an SAI protocol approach offers higher opportunities
to elicit suppression of MEP amplitudes. It is reasonable to
believe that including 889 MEP signals from 19 different
subjects offers adequateMEP variability for testing the SHTE
algorithm and comparing it with other prominent algorithms.
Presented statistical analyses showed that the sample size in
each amplitude band was sufficient for comparing the latency
estimation performance of the SHTE with other algorithms.
The developed SHTE algorithm presented in this work con-
tributes to the improvement of speed in obtaining the accurate

TABLE 14. Results of testing the robustness procedure for MEP signal
latency estimation in amplitude band Vpp < 100 µV for AHTE algorithm.

TABLE 15. Results of testing the robustness procedure for latency
estimation in amplitude band Vpp < 100 µV for SM algorithm.

estimation of MEP latency, especially for MEP signals with
low-amplitudes (Vpp <100 µV). The execution time of
the SHTE algorithm is similar to other tested algorithms
(AHTE, SM) since the SHTE algorithm comprises an almost
equal number of execution steps (phases), differing in square
operation, which is not computationally demanding.

Finally, the following limitation of the study has to be
pointed out. The parameter TDZ (defined as the duration of
the dropout zone time), which has to be set at the beginning
of the study, was embedded in SHTE and AHTE algorithms.
In our study, the TDZ was set to 18 ms, which was deter-
mined by the MEP latency norms for APB and FDI hand
muscles [2].
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TABLE 16. Results on testing the robustness procedure for MEP latency
estimation in amplitude band Vpp > 100 µV for SHTE algorithm.

TABLE 17. Results of testing the robustness procedure for MEP latency
estimation in amplitude band Vpp > 100 µV for AHTE algorithm.

To fully investigate the applicability of the SHTE algorithm
in the detection of latency of MEP signals with lower PTP
amplitudes (Vpp <100 µV), the proposed SHTE algorithm
can be exploited in future nTMS studies on healthy sub-
jects or patients having a tumour, spinal cord injury, neurol-
ogy diseases, etc., using different protocols (i.e. resting and
voluntary state, MEP recruitment curve, or other neurophys-
iological protocols).

VIII. CONCLUSION
In this article, the new SHTE algorithm for estimating MEP
signal latency on the pattern of MEP signals collected from
real subjects has been presented. The analysis was performed

TABLE 18. Results on testing the robustness procedure for MEP latency
estimation in amplitude band Vpp > 100 µV for SM algorithm.

on the large number of MEP signals acquired with the nTMS
approach from subjects in resting-state, engaged in SAI pro-
tocol. The validation of the SHTE algorithm was conducted
by comparing the latency estimation efficiency of the pro-
posed SHTE algorithm with prominent algorithms based on
AHTE and the SM while taking the manual assessment of
MEP signals as the reference validation.

Obtained results for the robustness test show the evident
advantage of using the SHTE algorithm in automatic MEP
latency estimation in all amplitude bands. Also, results related
to PDI proved that SHTE in comparison to AHTE and SM
algorithms has a lower PDI in estimating the MEP latency
for the MEP signals with the PTP amplitudes lower than
100µV (Vpp <100µV and 50µV>Vpp < 100µV). Hence,
the results of analyses presented in this article confirm the
possibility of implementing the SHTE algorithm in practical
applications such as TMS research and medical clinic work.

The developed SHTE algorithm represents an improved
armamentarium in MEP latency estimation for subjects in
resting-state and can be tested for implementation with other
neurophysiological states (i.e., voluntary state) and protocols
(i.e., MEP recruitment curve).Moreover, performed compari-
son of the proposed SHTE algorithm with other algorithms in
terms of efficiency inMEP latency estimation may contribute
to understanding the factors underlyingMEP latency variabil-
ity, especially those demonstrated in the field of neurosurgery.

A future research activity will be focused on finding
an optimal magic number for every MEP signal when the
SHTE runs and thus improving NOHs in all amplitude
bands (primary for MEP signals with PTP amplitudes lower
than 100 µV).

APPENDIX
See Tables 7–18.
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