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Abstract: Although information and communications technologies (ICTs) have the potential of 

enabling powerful social, economic and environmental benefits, ICT systems give a non-negligible 

contribution to world electricity consumption and carbon dioxide (CO2) footprint. This contribution 

will sustain since the increased demand for user′s connectivity and an explosion of traffic volumes 

necessitate continuous expansion of current ICTs services and deployment of new infrastructures 

and technologies which must ensure the expected user experiences and performance. In this paper, 

analyses of costs for the global annual energy consumption of telecommunication networks, 

estimation of ICT sector CO2 footprint contribution and predictions of energy consumption of all 

connected user-related devices and equipment in the period 2011–2030 are presented. Since 

presented estimations of network energy consumption trends for main communication sectors by 

2030 shows that highest contribution to global energy consumption will come from wireless access 

networks and data centres (DCs), the rest of the paper analyses technologies and concepts which 

can contribute to the energy-efficiency improvements of these two sectors. More specifically, 

different paradigms for wireless access networks such as millimetre-wave communications, Long-

Term Evolution in unlicensed spectrum, ultra-dense heterogeneous networks, device-to-device 

communications and massive multiple-input multiple-output communications have been analysed 

as possible technologies for improvement of wireless networks energy efficiency. Additionally, 

approaches related to the DC resource management, DCs power management, green DC 

monitoring and thermal management in DCs have been discussed as promising approaches to 

improvement of DC power usage efficiency. For each of analysed technologies, future research 

challenges and open issues have been summarised and discussed. Lastly, an overview of the 

accepted papers in the Special Issue dedicated to the green, energy-efficient and sustainable 

networks is presented. 

Keywords: energy-efficiency; wireless; green; sustainable; data centre; networks; ICT; 5G; power; 

wired access; IoT; 

 

1. Introduction 

United Nations (UN) General Assembly have set sustainable development goals (SDGs) by the 

year 2030, and analyses presented in [1] show that information and communications technologies 

(ICTs) have the potential of enabling powerful social, economic and environmental benefits. 

However, a lack of exploration and innovation attempts dedicated to the search for answers on how 

SDGs can be achieved through the implementation of ICT, requests for more global governmental, 
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technological, scientific and industrial attempts for accomplishing UN SDGs. The role of ICTs is 

twofold; while ICTs and networking currently contribute non-negligibly to the global energy 

consumption and carbon dioxide (CO2) emissions, they will also contribute to the reduction of carbon 

dioxide (CO2) and energy consumption of other industry sectors. This unique position of the ICT 

sector is confirmed in the SMARTer2030 report of the Global e-Sustainability Initiative (GeSI) [2], 

according to which expected carbon-dioxide equivalent (CO2e) emissions of the ICT sector in 2030 can 

be kept at the same level as those in 2015. This means that ICTs will yield the 20% reduction of global 

CO2e emissions by 2030 (Figure 1a). To illustrate the importance of ICTs in reducing CO2e emissions, 

it is worth to state that contribution to CO2e reduction due to the deployment of renewable energy 

sources by 2030 is estimated on 10.3 Gt, which is a (for 1.8 Gt) lower contribution to CO2e reductions 

when compared with 12.1 Gt of estimated CO2e reduction yield by the ICT sector (Figure 1a). 

  

(a) (b) 

Figure 1. Estimated: (a) contribution of different industry sectors to global carbon-dioxide equivalent 

(CO2e) reduction by 2030 [1], (b) information and communications technology (ICT) sector CO2e 

“footprint” contribution and enabled reductions to global CO2e emissions expressed in Gt [2]. 

According to estimates of GeSI, the ICT sector will give by 2030 significantly higher contribution 

to CO2e emission reductions when compared with other industry sectors (e.g., mobility, 

manufacturing, agriculture, buildings, etc.). To achieve such CO2e emission reductions until 2030, a 

significant decrease of ICT sector CO2e emissions in global CO2e emissions are envisioned by 2030 [2]. 

Based on results presented in SMARTer2030 report (Figure 1b), in 2020 ICT sector’s CO2 emissions 

“footprint” is estimated on 2.7% (1.43 Gt) of global CO2e emissions, while due to expected 

improvements in energy efficiency of ICT systems, ICT sector will in 2030 contribute with 1.97% (1.25 

Gt) to global CO2 emissions. This means that estimated CO2e emissions avoided by the use of ICT 

systems in 2030 (12.08 Gt) will be 9.7 times higher than the CO2e emissions generated by 

implementing the same ICT systems (Figure 1b). Thus, an expected increase in the implementation 

of ICT systems in the future can potentially alleviate the need for selection among environmental 

protection and economic prosperity and it can pave the way to the achievement of both goals. 

Despite such positive estimates, the increased demand for user′s connectivity and an explosion 

of traffic volumes necessitate continuous expansion of current ICTs services and deployment of new 

infrastructures and technologies which must ensure the expected user experiences and performance. 

This results in an increase in the energy consumption and energy cost of the ICTs infrastructure, 

which in recent years become one of the major concerns for the ICT sector. Due to the expected 

increase in diversity of connected objects, devices, applications and services and because of the rapid 

growth of the worldwide broadband subscribers, predictions related to global annual monetary costs 

for the energy consumption of ICT infrastructure are worrying. The energy consumption estimated 

for wireline (access, metro, edge, core networks and the associated data centres) and wireless access 

networks is presented in Figure 2a [3]. According to these forecasts, if no energy-efficiency 

improvements will be implemented, monetary costs for the global annual energy consumption of 

telecommunication networks will raise 8.6 times, more specifically form $40 billion in 2011 to $343 
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billion in 2025. This increase of energy consumption costs is a direct consequence of the need for 

satisfying explosive growth of annual global internet protocol (IP) traffic, which is estimated on 4.8 

ZB/year by 2022, or 396 EB/month. In 2022 this will result in a threefold monthly increase of IP traffic 

since 2017 (122 EB/month), or an astonishing 14.1 times increase since 2011 (28 EB/month) [4,5]. 

Due to increased energy costs pushed by constantly increasing traffic volumes, current network 

energy costs of telecommunication service operators in developing countries already span between 

40% and 50% of provider operational expenditures (OPEX), and between 7% and 15% of the OPEX 

for operators in developed countries [6–8]. This is confirmed by some telecom operators which start 

reporting energy bills of up to $1 billion, while some expect to reach these costs by 2020 [9]. 

  

(a) (b) 

Figure 2. Estimation of (a) costs for the global annual energy consumption of telecommunication 

networks in period 2011–2025 [2], (b) expected total annual energy consumption per different ICT 

systems in period 2010–2030 [10]. 

High energy costs of telecommunication networks presented in Figure 2a correlate with 

estimations of energy consumption trends of different ICT systems presented in Figure 2b. Estimates 

presented for the period 2011–2030 are performed with an assumption that takes into account 

expected annual: future improvements in the energy efficiency of ICTs systems, trends in future IP 

traffic growth and future improvements in electricity usage per traffic unit [10]. According to 

estimations presented in Figure 2b, expected annual electricity consumption of consumer devices 

(including desktop, monitor, laptops, televisions (TVs) and peripherals, tablets, mobile phones, 

smartphones, modems, etc.) will contribute to the global electricity consumption of ICT systems by 

2030 with 8.1% (670 TWh). Estimations further assume for fixed wired (core, distribution and access) 

networks, WiFi networks (consumer premises WiFi equipment), radio part of the wireless access 

network (second (2G)/third (3G)/fourth (4G)/fifth generation (5G)) and data centres (servers, power 

supply and cooling elements), yearly energy consumption contribution to the annual electricity 

footprint of ICT systems equal to 31.95% (2641 TWh), 10.75% (889 TWh), 2.35% (195 TWh) and 35.89% 

(2967 TWh), respectively (Figure 2b). Additionally, estimates for annual electrical energy consumed 

for the production of different ICT devices (user, wired and wireless network equipment, data centre 

devices) are anticipated at 10.92% (903 TWh) of total ICT energy consumption by 2030 (Figure 2b). 

Moreover, best, expected and worst-case forecasts related to the overall yearly electricity 

footprint of ICT systems in 2030 equals to 2698, 8265 and 30,715 TWh, respectively, which means that 

energy consumption impact of ICT systems for the overall global annual energy consumption can be, 

in the best-case, equal to 8%, or 21% for the expected (Figure 2b) and even an astonishing 51% for the 

worst estimation case. To get a sense of the rapidness of ICT energy consumption increase, in 2012 it 

was estimated that the complete ICT sector contributes approximately 6% to global electricity 

consumption [11]. Hence, worst or even expected (Figure 2a) forecasts of ICT energy footprint trends 

in global annual energy consumption by 2030 are alarming. This dramatic increase in energy 

consumption of ICT systems justifies the precipice of economic unsustainability. Obviously, current 

technology improvements cannot cope with the increasing energy consumption of the ICT sector and 

it is imperative to find novel solutions that will alleviate this problem. 
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The rest of the paper is organised as follows. The energy consumption of user-related devices is 

analysed in Section 2. Section 3 and 4 give an overview of research challenges for energy-efficiency 

improvements of radio access networks and data centres, respectively. A short description of all 

articles accepted for publication in the Special issue on green energy-efficient and sustainable 

networks of the Sensors journal are presented in Section 5. Finally, some concluding remarks are 

given in Section 6. 

2. Energy Consumption of User-Related Devices 

According to presented in the previous section, the energy consumption of data centres (DCs) 

and communication network devices is just one part of the overall ICT energy consumption, while 

energy consumption of user-related devices presents the other part. The energy consumption 

patterns of user-related devices point to different challenges and require different approaches to 

energy consumption reductions, than those envisioned for network and DC devices. Energy 

consumption estimates of user-related devices for the period 2011–2025 are presented in Figure 3 [3]. 

Presented estimates are performed for all connected user devices in cellular networks, internet of 

things (IoT) applications, public safety, intelligent buildings and generally for all consumer devices 

with a network connection. Estimates consider the explosive growth of user-related devices from 

about 50 billion in 2011 to 110 billion devices connected to the network in 2025 [3]. Forecasts for the 

global energy consumption of these user-related devices estimate the energy consumption raise from 

about 180 TWh in 2011 to 1400 TWh in 2025 (Figure 3), which represents a 7.7 time increase in the 

period of one and a half-decade. 

  

Figure 3. Estimations of energy consumption of all connected user-related devices and equipment for 

the period 2011–2025 [3]. 

Obviously, this estimated energy consumption increase is unacceptable, and attempts focused 

on alleviating such trends must take into account specific peculiarities of user-related devices. For 

example, a single sensor or IoT device, in reality, consume rather low amounts of energy in absolute 

values, however, it is expected that a vast number of such devices will be installed worldwide. On 

the other hand, battery-less user-related devices must have constant power supply while battery-

powered devices must have a periodic power supply for battery recharging. This power supply can 

be obtained from the electricity grid, by means of renewable energy sources, by means of energy 

harvested from the environment or through the combination of these power sources. Hence, the 

problem related to the energy footprint of user devices is not solely related to their annual energy 

consumption trends, it is also related to the sources of energy supply and energy autonomy in the 

case of battery-powered devices. Some estimates show that the number of user devices powered by 

rechargeable, grid, network and renewable sources will increase in the period from 2011 to 2025 for 

13×, 54×, 380× and 378× times, respectively [3]. Such figures mandate a necessity for significantly 

higher usage of renewable energy sources. 
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Additionally, advances in battery storage, new solutions for lowering power consumption of 

user devices and relying on energy harvesting is another possibility for energy footprint 

improvements. This will be especially important since running power lines to a huge number of user 

devices or repeatedly change of batteries will not be viable from the practical or economic point of 

view. Hence, implementation of a fully connected world characterized by IoT and internet of 

everything (IoE) applications will not be possible on a large scale unless the energy supply challenges 

of user devices are properly solved. Future solutions must offer trade-off in the energy equation 

among better energy storage, more effective use of harvested and renewable energy sources and 

lowering power consumption of user devices. 

Energy Consumption Trends  

Although Figure 2a,b shows estimated trends for telecommunication networks in terms of 

expected total annual monetary costs and electricity consumption per different ICT systems, more 

detail analyses are presented in this section in order to understand the future trends in energy 

consumption of communication networks. In Figure 4, energy consumption is breakdown into six 

main network sectors, more specifically: edge and core networks, radio access, DCs, service core, 

fixed access and residential and businesses. Contribution to the total annual energy consumption of 

each network sector in 2013 and estimates for 2025 are presented in Figure 4a and Figure 4b [3], 

respectively. Estimations are performed based on expected IP traffic growth and by assuming the 

potential benefits of new network architectures and technologies. According to Figure 4b, energy 

consumption will remain high or even increase in two sectors: the data (cloud) centres and the 

wireless radio access network, while in other sectors energy consumption will remain or even 

decrease. However, different technology improvements are required in each of these sectors to ensure 

that an increase in IP traffic in the future can be supported in an economically viable and sustainable 

way by 2025. Since wireless radio access networks and data centre sectors are the highest contributors 

to the overall network energy consumption, the next sections are dedicated to the presentation of 

main research challenges related to the improvement of energy efficiency (EE) of these sectors. 

  

(a) (b) 

Figure 4. Estimated network energy consumption for main communication sectors in: (a) 2013 and 

(b) 2025 [3]. 

3. Research Challenges for Energy-Efficiency Improvements of Radio Access Networks 

In this section, a review of the last research activities on green radio access approaches and 

energy harvesting for the power supply of network devices in cellular access networks is presented. 

Also, potential technical demands and some research topics for realizing green, energy-efficient and 

sustainable radio access networks are emphasized. For 5G networks, as currently the most prominent 

wireless network technology, tremendous performance improvements are envisioned. These 

improvements encompass support of: a thousand-fold increase in throughput in comparison to 
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present networks, up to ca. 7.6 billion mobile subscribers with the connection of at least 100 billion 

devices worldwide, up to 10 Gb/s individual user broadband speeds, IoE communications, tactile 

Internet applications and the network latency of 1 ms or lower. To satisfy such demanding 

performance gains, different novel technologies are emerging, but performance improvements 

incurred by 5G networks do not come without drawbacks. One of the major consequences is the 

degradation of EE expressed in bits/Joule (b/J), which has been broadly accepted as the EE metric for 

wireless communication systems [12]. It is expressed as  

𝐸𝐸 =
𝐹𝑅 × 𝑆𝑆 × 𝐵𝑊 × 𝑙𝑜𝑔2(1+𝑆𝐼𝑁𝑅(𝐷))

𝑃𝑐+𝑃𝑇
 [b/J], (1) 

where SS, BW (Hz), FR, D (m), PC (W) and PT (W) represents the number of spatial streams (spatial 

multiplexing factor), the bandwidth of signal, frequency reuse factor, distance among communicating 

devices, circuit (mostly static) and transmit (mostly dynamic) power consumption of communicating 

devices, respectively. According to EE Equation (1), the EE of cellular networks can be increased by 

augmenting the signal bandwidth, the multiplexing factor, the frequency reuse factor, or by lowering 

the circuit and transmit power consumption. In this regard, different paradigms for 5G networks 

have emerged (Figure 5): Communications based on millimetre-waves (mmWave), long term 

evolution in unlicensed spectrum (LTE-U), ultra-dense heterogeneous networks (UDNs HetNets), 

device-to-device (D2D) communications and massive multiple-input multiple-output (M-MIMO) 

communications. The impact of each technology on EE of radio access networks is further discussed. 

In Table 1, an overview of technologies for EE improvements of wireless networks with future 

research challenges characteristic for each technology is summarised. 

 

Figure 5. Techniques for energy-efficiency improvement of radio access networks. 
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Table 1. Technologies for energy efficiency  improvements of wireless networks and future 

research challenges. 

Technology 
Energy-Efficiency Improvement 

Area 
Future Research Challenges for EE Improvements 

Ultra-dense HetNets 

[13–20] 

Network design with decupled 

data and signalling 

Development of effective algorithms for the management 

of signalling and data decupling 

Network design with BS on/off 

switching 

Development of effective radio resource management 

algorithms for efficient BS activations and deactivations 

Network design with inter-cell 

interference mitigation 

Development of efficient inter-cell interference 

management schemes 

M-MIMO [12,14,21] 

Design of energy-efficient 

antenna selection 

Finding algorithms for the selection of an optimal 

number of antennas in M-MIMO systems 

Energy-efficient hardware 

design 

Finding novel hardware designs for multi-antenna 

placement in UTs 

Energy-efficient design of pilot 

tones 

Finding algorithms for reducing the energy consumption 

of pilot tome transmission 

mmWave 

communications [12,22-

24] 

Energy-aware transceiver 

designs 

Finding optimal hybrid control of RF transceiver 

architectures and antenna designs 

Energy-efficient analogue-to-

digital converters design 

Finding optimal analogy-to-digital converters in terms of 

sampling rate resolution 

Renewable energy 

sources [25–27] 

System design which exploits 

renewable energy and energy 

cooperation 

Solutions for estimation of optimal renewable energy 

sources for BS sites 

System design which exploits 

energy cooperation 

Development of systems enabling surplus power transfer 

among BS sites 

Design of BS site with efficient 

energy flows management 

Development of an optimal algorithm for energy flow 

management on sites with renewable energy sources 

D2D communications 

[12,28] 

Network design based on the 

hybrid overlay and underlay 

communication 

Development of algorithms for switching among 

underlay (assigned spectrum portion) and overlay 

(unassigned spectrum portion) communication designs 

System design which enables 

active users’ cooperation 

Development of algorithms for caching, sharing or 

relaying data with minimal UTs energy consumption 

LTE-U coexistence with 

other systems [12,29] 

Design of channel allocation 

protocols 

Finding optimal protocol for RF channel scheduling 

among different systems in an unlicensed band 

Energy harvesting 

[30,31] 

Design of highly efficient energy 

harvesting systems 

Development of algorithms for optimally balance 

between energy harvesting and data transmission 

Design of system which reduces 

energy conversion inefficiency 

Development of systems based on energy beamforming, 

D2D and HetNets communications with more energy-

efficient receivers 

Development of systems which 

exploit interference in wireless 

networks 

Development of systems which optimally exploits 

interference signals for energy harvesting 

3.1. Ultra-Dense Heterogeneous Networks 

In essence, UDNs are heterogeneous networks based on a massive deployment of diverse types 

of base stations (BSs), where macro-cells (of macro BSs) ensure base signalling coverage while micro-

cells (of mini/micro/pico/femto BSs) fulfils the demand for high throughput [13,14]. Such broadly 

accepted radio access network architecture based on decoupling data and signalling contributes to 

EE improvement of cellular networks and enables separation of downlink and uplink [15] 

communications. Due to the reduction of distance between users terminals (UTs) and BSs 

accomplished with densification of BSs allocation in such heterogeneous networks (HetNets), the EE 

improvements of the network are reflected in a significant reduction of transmit powers and 

consequently energy consumption for both (UT and BS) transceivers. Also, signalling and data 

decupling enable replacement of the macro-cell BSs by more energy-efficient types of BSs having 

distant radio access unit′s (RAUs) controlled from central location without impacting the small-cell 
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BSs layer. Additionally, decoupling enables combining different radio access technologies (RATs) 

such as mmWave and WiFi in existing networks, which can help in achieving further EE gains. 

Moreover, the separation of uplink and downlink transmission enables versatile association schemes 

among UTs ad BSs, which also can lead to significant energy savings for both, BSs and UTs [12]. 

Nevertheless, UDN concept is not without drawbacks. It is expected that the realization of such 

HetNets requests additional equipment and BS sites that will increase telecom operators' (TOs) total 

network energy consumption for up to 150%–170% by 2026 [16]. Hence, novel approaches to energy 

control within both, the 5G network infrastructure and changes in the way TOs purchase and deliver 

electricity to 5G networks will become critical as they extend density, coverage and capacity over the 

next decades. Also, signalling and data decupling raise the complexity of HetNets management and 

contribute to a significant increase in signalling overheads (Table 1). This request further 

investigations in the development of new signalling and network designs, which will enable full 

exploiting of signalling and data decoupling while preserving network EE. 

Another important approach to improvement of BS energy-efficiency is concept based on on/off 

switching of BSs (i.e., BS sleeping) to save energy [17–19]. Applicability of this concept is related to 

the nature of wireless traffic loads which varies in time and space.  This concept enables shutting 

down or putting into sleep mode some BSs in periods of low traffic loads and activation of BSs when 

there is a need for satisfying increased traffic demands. Such dynamic management of BSs activity in 

the radio access networks enables tuning of BS power consumption according to real traffic 

variations, which eliminates the waste of energy imposed with the traditional concept based on BSs 

which are permanently active, even in the periods with low or without any user traffic [12]. However, 

ensuring full-service area coverage, signalling for smooth user handovers among BSs and elimination 

of overloading of those BSs that remains active is a challenging task in case of BS on/off deployments 

(Table 1). To ensure optimal balance between network EE and service quality, further improvements 

of radio resource management algorithms must be developed and implemented.  

Due to the high-frequency reuse factor, inter-cell interference represents another challenge to EE 

implementation of ultra-dense HetNets. The Tx power increase of two neighbouring BSs initiated in 

process of BS radio resource management, can have a negative impact in terms of signal cancelling 

caused by inter-cell interference [20]. This degrades the system throughput and consequently leads 

to lowering of network energy-efficiency. Although complete elimination of inter-cell interference is 

not possible, management schemes which suppress interference, such as cooperative transmission, 

smart power control, interference alignment and resource scheduling and partitioning are needed for 

the successful proliferation of energy-efficient ultra-dense HetNets (Table 1). 

3.2. Massive-MIMO Technology 

Since it is based on exploiting a large number of BS antennas for serving many users with the 

same time-frequency resources, M-MIMO concept significantly improves multiplexing and array 

gain of 5G transmission systems. The drawback of M-MIMO implementation is that such concept 

increases significantly power consumption of individual BS sites. When compared with 4G BSs, M-

MIMO strongly contributes to increase of 5G BSs power consumption due to the increase in a number 

of analogue-to-digital converters with corresponding digital circuitry and power amplifiers needed 

for M-MIMO operation [21]. More specifically, typical 4G BS contain four transmit (Tx) and receive 

(Rx) elements (in so-called 4 × 4 MIMO arrays configuration), while 5G BSs are intended to work in 

up to 64 x 64 configurations, which is the reason why it is expected that 5G BS will have three times 

higher power consumption than its 4G predecessor. On the other hand, M-MIMO can bring some 

advantages with respect to EE of wireless networks [12]. This is because the uplink Tx power of 

single-antenna UT can be proportionally reduced with the number of MIMO BS antennas in the case 

when the equivalent results as those of a related single-input single-output transceiver wants to be 

achieved [22]. However, only reducing the Tx power of UTs is not sufficient for significant 

improvements of EE in wireless networks, since power consumed by electronic circuits has linear 

growth with the number of MIMO signal processing circuits, which has a non-negligible impact on 

the overall power consumption (Table 1). Hence, determining an optimal number of antennas in M-



Sensors 2019, 19, 4846 9 of 29 

 

MIMO systems arises as important research topic which generally yields assumption according to 

which, a larger number of antennas must be deployed in systems which Tx power dominates in the 

overall power consumption, and vice versa [14]. 

Furthermore, M-MIMO systems with a large number of antennas installed enable the 

implementation of simpler precoding algorithms and signal detection and transmission at the BS, 

which further enable significant savings in power consumption contributed by BS hardware. In 

comparison with the implementation of existing signal processing methods (successive cancelling of 

interference and dirty paper coding), implementation of advanced algorithms for signal processing 

such as maximum ratio transmission/combining contributes to the reduction of the dissipated energy 

required for signal processing computations [12]. Additionally, since M-MIMO systems demand 

much smaller RF Tx power (of the order of milliwatts), power amplifier losses during operations will 

be reduced which can bring significant power savings. Nevertheless, major challenges requesting 

broad investigations are currently present in the design of UTs hardware (Table 1). Major 

performance bottlenecks related to UT hardware are the limited physical size of UTs, lacking space 

for implementation of a large number of antennas and demanding requirements on battery depletion.  

Above all, M-MIMO systems require accurate and timely channel state information′s (CSIs) 

which acquisition is directly related to the Tx antenna number. This leads to the significant power 

consumption of pilot subcarriers and new approaches such as semi-orthogonal pilot design and pilot 

beamforming needs further exploiting in order to reduce the contribution of pilot transmission to the 

overall M-MIMO system energy consumption. Additionally, pilot interference incurred by reusing 

the same resources of pilots in neighbouring cells of multi-cell locations also diminishes the EE of M-

MIMO systems (Table 1). Hence, designing pilot interference mitigation approaches as well as 

balance in the exploitation of resources in time and frequency for training of pilots in downlink and 

uplink, are important topics that must be slaved in order to reach high EE of M-MIMO systems.  

3.3. Millimetre-Wave Communications 

For transmission in the mmWave spectrum, the conventional transceiver architecture having 

each antenna connected to the corresponding radio-frequency (RF) chain is energy-inefficient [12]. 

Inefficiency is a consequence of huge power consumption which emerges from the concurrent 

processing of vast amounts of data burst Giga-samples/s per each RF chain. Thus, an approach to 

alleviate the power consumption problem is to implement both, the digital and analogue 

beamforming, where every RF chain can be connected to all (fully controlled architecture) or to some 

antennas (partially controlled architecture) of a transmission system. The signal phase of each 

antenna must then be scheduled by a network of digital and analogue phase shifters (PSs) [23]. The 

fully connected architecture demands hundreds or even thousands of PSs, which maximizes spatial 

degrees transmissions utilization and minimizes EE. The partially controlled architecture exploits 

only a limited number of PSs that improve system EE, but reduces spatial degrees freedom and 

consequently transmission rates. Possible solutions, which are currently a field of research, aim to 

find optimal hybrid control architectures (Table 1). These architectures are based on a different 

number of antennas and RF chains, combining and precoding approaches, Tx power allocations and 

antenna arrays having a lens with energy-focusing. The development of these architectures can 

jointly or separately optimize the system performance whit minimal impact on EE degradation [24]. 

Besides the high-power demands of a huge number of PSs, another power consumption problem 

characteristic for mmWave systems are analogue-to-digital converters (ADCs). The power 

dissipation of ADCs increases exponentially with the increase in the number of bits per sample and 

linearly with the augmentation of the sampling rate [12]. Additionally, the data circuits which connect 

the digital elements to the ADCs are high energy consumers and have an evident correlation with 

the adopted sampling rate resolution (Table 1). This motivates the search for finding optimal ADCs 

in terms of sampling rate resolution, which will efficiently balance between the power consumption 

and the data rate or ensure optimal combining of low and high-resolution ADCs in order to maximize 

EE. 
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3.4. Renewable Energy Sources 

An approach based on powering BSs sites using energy harvested from renewable energy 

sources such as wind, solar, fuel cell or combination of these energy sources significantly contributes 

to the improvement of wireless network EE. Current trends in terms of integration of renewable 

energy into power supply systems of contemporary wireless networks are twofold. The first 

approach is dedicated to the replacement of an off-grid diesel-based BS power supply system with 

those relying solely on some renewable energy sources. The other approach is based on the so-called 

hybrid BSs sites which use different renewable energy sources or a mix of renewable, diesel generator 

and/or grid energy. In addition to EE improvements and operational expenditure reductions, such 

approaches significantly reduce or even completely eliminate diesel generator CO2 emissions from 

BS sites [25,26]. However, the optimal selection of renewable energy sources in terms of size and 

power generation capacity, for the specific site remains one of the major challenges (Table 1). Hence, 

further investigations in the development of simulation tools that can fairly estimate the techno-

economic aspect of transforming a typical BS site in green BS site must take place.  

Additionally, the integration of renewable energy sources into BSs power supply systems can 

provide compensation for the additional circuit power consumption in case of installing more BSs on 

BS site [12]. Also, dense allocation of BSs employing energy harvesting from renewable sources can 

facilitate possible energy cooperation between BSs. This cooperation can be based on transferring 

through power lines superfluous energy collected on sites harvesting more energy, to BSs sites that 

harvest less energy (Table 1). 

However, the major challenge in realization of durable BS site power supply solutions can be 

found in the intermittent nature of renewable energy sources, limited battery capacities installed on 

sites and necessity for ensuring stable and without any interruptions power supply of BSs sites. This 

imposes the development of resource allocation algorithms for the management of BS site power 

demand. Such algorithms must consider the traffic variations and wireless channel state 

information′s, power supply impacted with the unpredictable nature of renewable energy sources 

and battery recharging and depletion cycles [27]. Algorithms for efficient energy flow management 

of BS sites are generally categorized as offline and online algorithms. The first one can be developed 

by exploiting optimization theory approaches and the second one assumes that some statistical data 

is accessible at the Tx side or they use the insights observed from the offline algorithm. Since 5G 

networks are characterised with very dynamic traffic variations, results of offline algorithms often 

serve as performance upper bounds for online algorithms. Nevertheless, the development of an 

optimal resource allocation algorithm for a specific hybrid BS power supply solution, continues to be 

an object of research interest (Table 1). 

3.5. Device-To-Device Communications 

This type of communication offers effective local spectrum reuse through two modes of 

operation: the cellular mode where UTs communicate via BSs and the D2D mode which ensure 

possible communication of UTs directly with each other [28]. D2D mode of communication can be 

realised through reuse of the spectrum portions that have not been assigned (known as overlay 

communication) or has already been scheduled to UTs (known as underlay communication). Overlay 

D2D communication does not generate co-channel interference, which results in more efficient 

spectral efficiency (SE) of the D2D system [12]. In periods when such interference is weak, it is 

possible to switch to underlay communication which offers more energy-efficient D2D 

communication system design (Table 1). However, for switching among underlay and overlay 

communication designs, effective algorithms must be envisioned, what represents a prominent 

research field. 

Another advantage of D2D communications is the ability of proactive cooperation between 

users, what can bring EE improvements in 5G networks, particularly in terms of extending the mobile 

devices' battery lifetime. More specifically, active UTs in D2D networks can work as mobile relays or 

cluster heads of UT clusters and local cashing devices, and each of these working modes can bring 

possible EE improvements of the cellular network [12]. A mobile relay mode based on a multihop 
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relaying of data among UTs and BSs or other UTs can reduce high energy consumption needed for 

direct transmission between distant UT and BS, since communication among relaying nodes can be 

realised with lower Tx powers. Local content caching provides a way to better exploit the UTs data 

storage in 5G networks and enables power consumption and backhaul loads reduction through 

optimal decisions related to what content to cache and at which location (Table 1). Although active 

user cooperation offers significant advantages in terms of improving SE and EE, further 

investigations must give an answer on how UTs can be managed to cache, share or relay data for 

other UTs at the expense of consuming their own energy. 

3.6. Long-Term Evolution Coexistence with Other Systems in Unlicensed Spectrum 

Implementation of LTE-U technology is constantly challenged with the need for simultaneous 

coexistence of different systems working in unlicensed bands, such as wireless local area network 

(WLAN) systems and overlay Long-Term Evolution (LTE) systems [12]. Since LTE employs 

scheduling-based and WLAN contention-based channel access mechanisms, lack of constraints in 

LTE transmissions may cause permanent interference to WLANs, where the channel is sensed as 

mostly unavailable [29]. This results in unending backoff times for the WLAN transmitters and poses 

low EE of the network due to the high energy consumption of the WLAN users lacking the possibility 

of transmission while waiting on backoff timer expiry. Hence, advanced modifications to resource 

management become critical for the coexistence of different systems in unlicensed bands, and so far, 

two methods have been proposed: duty cycling and the listen before talk method. The first one 

defines periodic turning off and on of the LTE transmitter, without checking the availability of the 

channel before transmitting, while the second one requires a check of channel occupancy by WLAN 

systems before the LTE system can start transmission. However, the first method lacks real 

responsibility of ensuring any transmission time window for WLAN networks since LTE carriers 

define on-off scheduling, while the second method has degraded performance caused by excessive 

transmission collisions in case of a huge number of devices contending for the channel (Table 1). 

Hence, currently there is no broadly accepted protocol that will ensure the harmonious coexistence 

among systems transmitting in the unlicensed spectrum (LTE-U, WLAN, etc.), and more advanced 

solutions for alleviating this coexistence issues are jet to be devised. 

3.7. Energy Harvesting 

Wireless power transfer (WPT) known as RF energy harvesting, allows small receivers which 

are expected to be massively used in 5G use cases like IoT to harvest energy from RF signals which 

will be received [30,31]. WPT is assumed to be a promising technology for powering a huge number 

of devices, since harvested energy from RF eliminates the need for powering those devices from an 

electric gird and also enables battery lifetime extension of mobile, sensor or actuator devices. 

Although WPT can be fully managed at the receiver side, in the practical implementation of RF 

energy harvesting, the main challenge is ensuring optimal balance among the harvested energy and 

the achievable transmission rates. This balance can be realized through the implementation of an 

approach based on exploiting simultaneous wireless information and power transfer (SWIPT), where 

the receiver device during reception divides the received signal into two parts, one for energy supply 

obtained through energy harvesting and the other for information decoding [12]. Another approach 

known as wireless powered communication network (WPCN) splits information transmission and 

energy harvesting in time, where wireless devices first harvest energy from received signals and then, 

by means of harvested energy perform wireless information transmission (WIT). In the case of the 

first approach, the development of algorithms which will minimize the power losses at the receiver 

in order to maximise the harvested energy and the achievable throughput must be devised. 

Regarding the second approach, proliferation of novel solutions which will ensure intelligent 

selection of WIT and WPT requests for further investigations and improvements (Table 1). 

Although RF energy harvesting brings many advantages, the major implementation issue is 

system performance which is significantly limited by the severe RF signal path loss and consequently 

low energy conversion efficiency at the position of the energy harvester. One of the possible 
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approaches to system performance improvement is in the implementation of an energy beamforming 

concept [28]. This concept is based on the transmission of narrow beams through multiple antennas 

with optimized beamforming vectors, which is fully compatible with M-MIMO and mmWave 

theologies. Moreover, D2D communications and ultradense networks (UDN) are technologies that 

contribute to performance improvements of energy harvesting systems. This is because each of these 

technologies ensures a reduced range among communicating pairs, what reduces the distance for 

energy transfer and consequently improves WPT efficiency (Table 1). Also, the substation power 

consumption of electronic circuits during information decoding and channel state information 

acquisition asks for further attempts in finding new receiver architectures which will consume less 

power. 

Finally, the fact that energy harvesting of co-channel interference can be exploited for ensuring 

the power supply of receiver devices, gives completely new light on the impact of interference which 

can become a potential energy source. To exploit interference as an energy source, possible solutions 

can be based on deliberate artificial interference insertion into communication channels. This 

approach enables devices to harvest energy in the case of dominant co-channel interference and to 

decode information in case when this interference diminishes (Table 1). Obviously, more 

investigations related to such a paradigm shift are needed in future research. 

4. Research Challenges for Improvements of Data Centres Energy-Efficiency 

According to analyses presented in Figure 2b and estimation of data centres (DC) future energy 

consumption trends presented in Figure 4, increasing trends of DC energy consumption become a 

major concern. Additionally, DCs continually run at high underutilization due to fragmentation and 

over-provisioning of resources [32,33], with common utilization levels spanning between 5% and 25% 

[34–37]. Besides significant energy waste caused by such low utilisation of DCs which further 

worsens the energy inefficiency problem, the low DC utilization causes the energy dissipation of 

other DC ancillary equipment and infrastructure, such as cooling and power supply systems. 

Additionally, authors in [38] analyse green issues related to the processing of the vast volume of 

information’s characteristic for emerging big data concepts. Analyses address the green challenges 

related to the three phases of the big data life cycle which are characterized as data 

generation/acquisition/communications, storage and processing. Also, the study suggests novel 

green metrics for processing big data in order to accommodate the need for adopting new definitions 

of green metrics which will correspond to the contemporary big data concept. Although different 

metrics for expressing DC energy efficiency have been proposed, the widely accepted metric is power 

usage effectiveness (PUE) defined as [39]: 

𝑃𝑈𝐸 =
𝑃𝑇𝑂𝑇

𝑃𝐼𝑇
, (2) 

where PIT is instantaneous power of the IT equipment consumed by the DCs storage, network, servers 

and monitoring devices (laptops or workstations), and PTOT is the overall DC instantaneous power 

consumption which includes the aforementioned PIT power and instantaneous power consumption 

of ancillary DC equipment (cooling system, power distribution system, uninterruptable power 

supply, etc.). In [39], an average value of the present DCs PUE is suggested to be 1.83 and according 

to the Equation (2), better DC EE means lower PUE and vice versa. Since PUE of present DCs is 

extremely high, different techniques and approaches for improving EE of DC arise. TheEquation (2) 

indicates that a better PUE can be accomplished if total DC facility power will be reduced and to this 

end, research efforts focused on improvement of DC energy-efficiency encompass the following 

techniques: improvement of DC resource management, increasing DC servers efficiency through 

power management, developing green DC monitoring and simulations and enhanced thermal 

management of DC. In Table 2, each of the stated techniques for improvement of DC energy-

efficiency with corresponding future research challenges is presented. Also, Figure 6 summarises 

techniques for energy-efficiency improvement of DCs and an overview of the latest research on green 

DCs is presented in the next sections. 
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Table 2. Technologies for EE improvements in data centres and future research challenges. 

Technology 
Energy-Efficiency Improvement 

Area 
Future Research Challenges for EE Improvements 

DC resource 

management [36–81] 

Energy-aware VM/containers 

assignment in DCs 

Finding an optimal algorithm for the implementation of 

energy-efficient VM/containers management 

Energy-aware DCs network 

traffic engineering 

Development of algorithms for energy-efficient 

adaptation of DC traffic paths and network 

architectures 

Energy-efficient power 

distribution in DCs  

Design of energy-aware solutions for intra and inter DC 

workload scheduling and power distribution 

Usage of renewable energy for 

DC power supply  

Finding solutions for optimal control of DC power 

supply form renewable energy and implementation of 

stimulating energy pricing models  

DC servers power 

management [82–98] 

Energy-aware DFVS scaling of 

server components  

Finding optimal frequency/voltage and link speed 

scaling solutions for minimization of the DC power 

consumption 

Energy-aware server/server 

component activity scheduling  

Development of novel energy-efficient algorithms for 

on/off server or server components switching  

Energy-efficient hybrid (DFVS 

and component activity 

switching) solutions 

Development of algorithms which combine DVFS and 

on/off server or server components switching 

DC monitoring and 

simulation management 

[99–126] 

Green DC monitoring 
Development of novel DC monitoring tools which will 

enable analyses of green metrics  

Green DC simulators  

Design of a system-oriented DC simulator for 

concurrent performance simulation of different DC 

elements 

DC thermal management 

[127–134] 

Energy-efficient cooling and 

workload distribution 

Development of temperature-aware DC workload 

assignment algorithms 

DC management system which 

improves temperature to 

reliability trade-off  

Design of novel temperature-resistant components for 

DCs with an increased average temperature  

 

Figure 6. Techniques for energy-efficiency improvement of data centres. 

4.1. DC Resource Management 

To address resource underutilisation as one of the major DC problems causing an excessive 

energy consumption, modern servers in DC use the concept of virtualization for presenting the 

abstraction of many dedicated virtual machines (VMs) or containers executing separate applications 

(Figure 6) [40]. Hence, optimal migration, allocation and consolidation of DC server resources known 

as VMs/containers management is an important approach to the improvement of DC resource 

utilization and energy consumption reduction (Table 2). Generally, VMs/containers management is 

based on the efficient scheduling of VMs/containers to servers based on satisfying specific 

performance metrics and resource demands [39]. Although different approaches to VMs/containers 

management have been proposed [41–50], the main cause of why the utilization of DC resources still 

remains ignoble is that DC administrators and owners worry about the potential quality of service 

(QoS) violations caused by VMs/containers management. Additionally, in multi-tenant DCs, versatile 

tenants can request different levels of application performance that request heterogeneous resource 
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management algorithms, which further increases its complexity. Hence, algorithms which will 

optimize DC energy-efficiency through optimal VM/container management and DC right-sizing, 

while preserving QoS in single and multi-tenant DCs, are at present important research issues. 

However, improving DC resource utilisation will consequently contribute to the DC energy-

efficiency improvements and solutions which will provide efficient resource management policies 

that require future exploration. 

Additionally, traffic engineering is a very efficient concept which enables improvement of DC 

energy-efficiency (Table 2). It is based on the adaptation of DC traffic paths and network architectures 

according to DC traffic patterns [51]. To obtain proportionality between DC traffic variations and DC 

power consumption, different solutions have been proposed based on traffic aggregation and 

VM/container assignment techniques using virtualization of network functions [52–60]. Although 

network function virtualization promises as an approach in providing EE improvements for 

deployment and management of the network services, problems such as preserving QoS and lack of 

accountability for the energy consumption of many implementations such as cloud networking 

system (for example CloudNaaS) [61] remain unsolved. Hence, finding an appropriate trade-off 

between network performance and EE is currently a challenging problem that solving requires 

further research. 

Another issue related to DC energy inefficiency is the over-provisioning of DCs power 

distribution system, which brings high energy costs during idle periods of DCs operation. DC power 

distribution systems are generally over-provisioned since the deployment of such systems in terms 

of power capacity is based on satisfying traffic peaks and allowing DC expansions in the future. 

However, due to the rare occurrence of simultaneous peak power draw across all equipment in DC, 

power over-subscription is intentionally utilised for enhancing DC power exploitation (Table 2) [34], 

[61–66]. In order to more efficiently utilize the total DC power budget, proposed concepts are based 

on power capping, power routing and dynamic power shifting among power distribution units 

(PDUs) and various distributed components. These approaches are performed according to the 

workload variations and DC power availability. Besides dynamic power shifting, to address the peak 

power demand issue, a few works have introduced uninterruptible power supplies (UPSs) as an 

energy consumption saver [67–69]. The energy stored in batteries of UPSs is used to provide energy 

during periods of highest power demand, which results in DC OPEX reductions without 

performance degradation. Nevertheless, existing works neglect the possibility of inter-DC power 

scheduling were geographically distributed DCs can also offer opportunities for power distribution 

(Table 2). Inter-DC power scheduling enables preferment power scheduling to DCs with a larger 

amount of stored energy by consequence of being allocated closer to the larger sources of energy. 

Additionally, the low efficiency of UPSs used in DC during low UPS power demand periods, further 

contributes to the degradation of PUE. Some initial analyses of concept based on the simultaneous 

UPS and server/VMs consolidation in accordance with the DC workload variations show promising 

results in terms of improving DC energy-efficiency [70,71]. Still, major challenges related to achieving 

energy consumption reduction obtained through combining application performance, workload 

scheduling and power distribution in DC remains. This requests novel and more advanced solutions 

that can cope with DC power over-provisioning. 

The use of renewable energy is another approach to improvement of DC energy efficiency (Table 

2). Renewable energy sources such as solar, geothermal or wind energy are investigated for power 

supply of DC [72]. However, sporadic, unstable and limited nature of renewable energy production 

significantly determines the use of such green energy for DC power supply. Therefore, the question 

requesting to be addressed is how to use energy from renewable sources for the power supply of DCs 

and overcome the associated restrictions. To address intermittent power constraints of renewable 

energy, most of the previous research activities have been dedicated to the development of solutions 

in which the DC load had been adapted to follow the variable power supply capacities of renewable 

energy sources [73–75]. However, power supply solutions solely relying on unreliable renewable 

energy sources can experience unpredictable performance degradation and the most common 

approach to overcome such challenge is to have a hybrid DC power supply system combining the 
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electrical grid and one or more types of renewable energy for DC power supply [76,77]. Such 

approaches use weather forecasts and historical data to estimate available renewable energy in the 

future, with the goal of optimal usage of renewable energy sources. Another challenge in using 

renewable energy for power supply of DCs is related to attenuation losses caused by the transfer of 

renewable energy over long distances. To avoid this, several proposed solutions suggest scheduling 

of server’s workload to multiple DCs located in different geographical locations according to the 

availability of nearby renewable energy sources [78–81]. It is shown that such traffic routing based 

on geographical location can considerably reduce the brown energy consumption, if the energy tariff 

will be dynamically defined, and the degree of renewable energy usage will depend on the energy 

pricing model. Hence, future research must offer analyses of beneficial pricing schemes which will 

encourage DC operators to reduce brown energy consumption. 

4.2. DC Servers Power Management 

4.2.1. Dynamic Frequency and Voltage Scaling 

The broadly accepted approach related to the improvements of DC servers power management 

is based on dynamic frequency and voltage scaling (DFVS) of server components (Table 2). The DFVS 

as the approach is based on lowering the frequency/voltage of components in order to achieve power 

savings in periods when the frequency/voltage of server components can be reduced. Due to 

approximate proportionality between the power consumption and the supply frequency/voltage of 

different hardware components, the goal is to find an optimal dynamic allocation of frequency/ 

voltage resources which will minimize the overall power consumption and ensure predefined 

performance. Vast research results related to the improvement of DC energy efficiency by 

implementing DFVS management according to individual servers computing and traffic load 

variations have been presented [82–94]. Additionally, research efforts on the level of energy-

efficiency improvements of the large-scale server′s warehouse through the implementation of DFVS 

are analysed in [37,95–96]. Since higher frequencies or voltages enable faster execution with the 

drawback of the increased power consumption, in [95], the optimal power allocation problem related 

to finding the optimal frequencies/voltages of the server components in a server farm was analysed 

based on server’s workload. Furthermore, the implementation of an adaptive link rate (ALR) concept 

on the DCs network level was analysed [89,97,98]. The concept is based on an adaptive selection of 

speeds of links connecting DC servers in DC communication network. In order to contribute to the 

DC energy consumption reduction, adaptive adjustment of the Ethernet link data rate according to 

utilization shows that significant energy savings can be achieved since an Ethernet link can work 

almost 80% of the time at lower data rates [89]. However, most solutions proposed in the papers 

related to the DFVS concept, have been focused on power models which are assumed to be ideal. 

Hence, future research activities should consider models that have more similarities to real systems. 

More specifically, overhead which is not taken into account is mostly incurred when switching 

frequency or voltage speeds took place, because the central processing unit (CPU) must stop during 

these changes. Also, frequent changes in frequency/voltage speed can have a negative effect on CPU 

lifetime and a challenging issue is how to include these facts in performance analyses of practically 

implemented systems. 

4.2.2. On/Off Server and Component Switching 

Another approach related to the DC server′s power management is based on the server 

components activity scaling, which envisions the transition of server components (such as server 

CPUs, memory, etc.) during idle traffic and computing periods into sleep or low-power standby 

mode (Table 2). The challenge is to decide when sufficiently long idle periods exist that enable 

component (CPU) activity state switching, while the cost for transitioning from or into the low power 

consumption state will not outweigh the costs incurred by this transition and will satisfy the 

workload demand. Analyses of the challenge of scheduling the power consumption in a two (sleep 

and active) states are presented in [99], and different studies extend analyses with multiple stets in 
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[100,101]. Generally, components (such as CPU) state transition energies were assumed to be additive 

[100,102]. By taking into account different assumptions related to CPU state transition energy, 

different CPU scheduling algorithms in the case of single and multi-processor environments were 

proposed [104,105]. 

Additionally, a number of different studies proposed energy proportional computing for large 

hosting DCs [105–110], which are based on the concept of dynamic activation and deactivation of DC 

servers proportional to the DC workload demand (Table 2). Through such energy-aware 

provisioning, the server load is directed to the minimal active set of servers in DC and reduction of 

the server power consumption by 29% for characteristic web-based load is reported in [111]. 

Nevertheless, the novel approaches to further optimize DC energy consumption need to be devised. 

More specifically, in widely accepted parallel scheduling of jobs to different CPUs of servers which 

number is fixed, the scheduler decides about jobs that will be processed on CPUs and make a decision 

at any given time about the speed of each CPU. But, DCs operate on a different concept in which on-

demand activation or deactivation of servers must be achieved. Hence, such DCs properties impose 

the development of new algorithms related to improving PUE while satisfying DC scalability and 

efficiency. Also, the power consumed, and latency generated during the rebooting of servers means 

that the effects of on/off server switching or DC networking device switching must be taken into 

account. 

Furthermore, power-down mechanisms based on the concept of aggregating and redirecting 

network traffic on a few network devices which remain active are proposed in [106–109]. However, 

DC network architectures often ensure many communication paths between servers. This imposes 

the challenge of how to effectively control power consumption in DC networks and requests deeper 

investigation which will offer novel topologies and designs of DC networks, while satisfying 

demands for the network delay, congestion, loss of packets and throughput in those networks. 

4.2.3. Hybrid DFVS and On/Off Server Switching 

Another approach for improvement of DC server power management is based on hybrid 

concepts that exploit both DFVS scaling and servers or server components switching models. This 

hybrid approach is seen as a promising approach that can bring further improvements in DC energy-

efficiency. This approach considers accelerating the processing tasks of server or server component 

activity, which results in longer idle periods, during which devices can be in the sleep or shut-down 

mode. Longer idle periods then give a higher contribution to the energy savings. The first theoretical 

analysis with an algorithm enabling combining system sleep mode for idle workload periods and 

DFVS during task processing periods are presented in [110]. In subsequent studies [111–114], 

improved algorithms were presented, some of which enable on-line scheduling and have low 

complexity orders. To enhance energy savings at the level of complete hosting DCs, in [116] a 

framework allowing the implementation of both approaches is introduced, while in [116], the authors 

considered the power consumption reduction in geographically distributed DCs. Hybrid techniques 

for improving the energy efficiency of network elements in DCs are used in studies [117,118]. In [117], 

to reduce network energy consumption, hybrid technology is implemented based on adjusting the 

rate of network operators to the real workload. Furthermore, in [118], the authors formulated an 

approach for online traffic management which reallocates the computing demands among a 

multitude of paths while optimizing energy consumption. Although both approaches report some 

energy savings, further investigations related to the implementation of the hybrid approach must 

take place. 

Additionally, current results mostly focus on DC environments having servers with multiple 

homogeneous processors. Nevertheless, it is also important to take into account the DC server′s 

heterogeneity, since the servers in DC mostly differ among themselves in terms of computing and 

hardware performance. Hence, results for heterogeneous environments in terms of the design of 

energy-efficient algorithms that can combine different DC power management methods are currently 

missing.  
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4.3. DC Simulation and Monitoring Management 

Effective monitoring of DCs enable detecting the traces and tracks of thermal emission, power 

distribution and energy consumption for individual DCs equipment. Collected data can be used for 

the implementation of intelligent mechanisms based on which, the DC energy efficiency can be 

increased. Different DC monitoring services have been presented in [119,120]. Based on the collected 

data related to the VM application workloads, the resource utilization and power usage, DC online 

monitoring service presented in [119] enable a better understanding of the DC temperature behaviour 

and energy consumption. Developed monitoring solution also helps in consolidating the VM 

workload, which contributes to the significant energy savings. In [120], a monitoring solution based 

on request-tracing concept was implemented for determining energy inefficiencies in multi-tier DCs. 

The solution is based on collecting the resource consumption of respective requests and analyses of 

the characteristics of every DC tier. This further enables insights into the main causes of energy 

inefficiency of DCs and gives an opportunity to devise efficient power-saving methods for multitier 

applications. 

As an example, green storage initiative (GSI) of the Storage Networking Industry Association 

(SNIA) works on forming a global standard for defining energy efficiency metrics of storage products 

working in the DC environment [121]. The proposed methodology enables the standardized and 

uniform method to grade the power efficiency of commercial (file, block, converged, object, etc.) 

storage in idle and active working states. This enables selecting the type of storage which best suits 

DC owner goals with the lowest power consumption contribution. This also motivates manufacturers 

to develop more energy-efficient storage devices since its energy efficiency can be compared among 

vendors. 

Although monitoring of green metrics offers diagnosing of DCs energy inefficiencies, the 

development of monitoring tools has not been in the main research focus so far. The main obstacles 

in the realization of efficient DC green metrics monitoring are the availability of communication 

resources in DCs and a huge number of VMs and containers hosted on a large number of servers. 

Thus, future research activities need to be focused on solving the key research question related to the 

minimization of the costs incurred during collecting green DC metrics in a centralised or distributed 

manner, while guaranteeing monitoring accuracy. 

Another approach to improvement of DC energy efficiency is based on simulation of DCs 

activity by means of developed simulation tools that enable understanding and identification of the 

design challenges that are crucial to DC energy efficiency. In this regard, different simulation 

platforms such as SimWare [121], GDCSim [122], GreenCloud [123] and EEFSim [124] are proposed. 

SimWare simulator [121] enables evaluation of the DC energy-saving policies and examination of 

mechanical functionalities such as management of airflow, cooling strategies and server placement. 

GDCSim proposed in [122] enables the iterative design of green DCs configurations for specific 

purposes, such as DFVS for power management, CPU sleep-state transitions and characterisation of 

thermal behaviour. GreenCloud [123] is a packet exchange simulator for energy-aware analyses of 

cloud DCs, which can be used for capturing the energy consumption of versatile DC elements such 

as switches, links, servers, as well as packet-based communication patterns. EEFSim [124] reproduce 

the behaviour of a real cloud DC and enables the possibility to examine the power consumption of 

different migration and scheduling policies with VMs. Nevertheless, the main drawbacks of these 

simulators are that each of them is very specific and dedicated only to certain functions or 

components of DC equipment such as CPU, VM, cooling, etc. Therefore, the task of designing a 

comprehensive system-oriented DC simulator that will integrate all DC components, such as the 

memory, CPU, cache, disks, input/output components and communication network is still an open 

task which requests addressing.  

 

4.4. DC Thermal Management 

Since typical DC hosts thousands of servers and communication network devices, it is reported 

in [125,126] that up to one-half of the total DC costs are spent on the cooling. These trends will be 
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further contributed with previously presented servers′ virtualization and consolidation techniques. 

These techniques increase processor utilization rates, which consequently contribute to the increase 

of thermal dissipation. Additionally, a combination of the abovementioned issues with trends 

characterised with server’s concentration and high-density computing (realised through usage of 

many multi-core processors in single chasses), will raise the problem of thermal control as one of the 

most critical issues in deploying green DCs. 

To cope with such a problem, in [127] the optimization of the DC cooling delivery is based on 

full control of the DC environment through collecting different DC attributes such as data 

aggregation, variable air conditioning and distributed sensing. Although this concept reports energy 

savings of up to 50%, another approach based on exploiting thermal energy storage (TES) tanks for 

the reduction of DC power is presented in [128]. In this concept, up to 28% in OPEX reduction is 

reported since this approach is based on TES storage of cold water or ice which are exploited as a 

supplement to the chillers used for cooling DCs and for heat exchange during peak power periods. 

Additionally, a very promising research field which can improve DC thermal management is based 

on DC workload migration and assignment among servers, in order to achieve thermal balance [129–

131]. The general idea is dedicated to the development of algorithms for load scheduling based on 

temperature variations, which can reduce the energy consumption of the infrastructure dedicated to 

DC cooling [129]. The approach proposed is based on the dynamic transfer of server’s workload from 

″warmed″ servers and increasing the workload on remaining ″colder″ servers. The approach in [130] 

uses periodic temperature monitoring and server utilization for scheduling requests according to the 

DC workload weights. Also, in [131], a data-centric model dedicated to minimization of energy costs 

for DC cooling is developed based on dynamic file allocation in an energy and thermal-aware 

manner. The proposed model is developed by means of known data-semantics, cluster information 

and server-profile. Proposed approaches show possible energy savings between 20% and 42%. 

Additionally, in [132], the challenge of temperature-aware workload distribution in geo-distributed 

DCs is shown. 

A completely different approach is based on efforts related to the reduction of the costs imposed 

by cooling, if the higher temperature can be sustained in DC. Basically, the concept is based on 

increasing temperature setting by only a few degrees, which results in an energy consumption 

reduction of 2%–5% [133]. However, the temperature increase of the servers and other equipment in 

DCs can contribute to a shortening of the DC equipment lifetime, which further contributes to the 

increase of capital expenditures (CAPEX) costs. Some initial studies related to the analyses of 

hardware (storage/memory/server) reliability and server performance presented in [134] show that 

in order to save energy, the DC could work at hotter temperatures than current ones, while negative 

effects on system reliability and performance can be partially limited. Still, better analyses of how 

temperature raise in DC can affect DC systems are needed and this field remains an open research 

topic. 

Some other approaches which can offer the possibility of DCs to operate at higher temperatures 

are related to the development of new temperature-resistant hardware components. However, such 

components are still in their infancy and novel temperature-resistant chip and hardware solutions 

should be developed. 

 

 

5. A Review of Articles for Special Issue on Green, Energy-Efficient and Sustainable Networks 

The paper [135] analyses the influence of the node speed on the throughput and energy 

provision in an IoT network, where wireless charging stations (WCSs) are deployed to recharge IoT 

nodes while data transfer among nodes is limited by their abrupt links as well as the amounts of 

residual energy. To optimize node throughput and energy depletion of IoT nodes in such network 

based on wireless power transfer (WPT), authors propose a two-dimensional model based on Markov 

chains where the first state dimension represents the span to the closest WCS normalized with speed 

of nodes, while the second one represents residual energy of the node. Obtained results show that to 
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enhance wireless charging efficiency, charging opportunity must be prioritized by WCSs based on a 

speed of IoT nodes, for which battery capacity can be minimized if the speed of nodes can be 

predicted. Also, if the same throughput must be ensured, it is shown that a lower number of WCSs 

per node can gain appropriate WPT to all nodes in the area of high mobility, while a larger number 

of WCSs per IoT node are needed in areas of low mobility. 
The next paper [136] tackles the problem of improving the energy-efficiency of software-defined 

networking (SDN) equipment based on the concept of traffic aggregation on links between two 

switches. In the paper, authors present different traffic allocation algorithms for SDN applications, 

which enable aggregation of the traffic flows to a few ports of the Ethernet links bundle in accordance 

with the traffic variations. Proposed allocation algorithms are validated in terms of packet losses, 

energy-efficiency and delay of packs. Obtained results show that the implementation of equipment 

with SDN capabilities can reduce energy consumption when Ethernet link bundles are used for up 

to 50%, without the necessity of changing devices firmware. Also, improvements of the two previous 

algorithms dedicated to offering a low-latency service for data traffic with strict requirements in 

terms of QoS and sustained energy consumption are proposed. According to the shown results, the 

algorithms can ensure the service which requests a low-delay of some orders of magnitude to time-

sensitive traffic.  
In [137], image compressive sensing is analysed as a potential image sensing approach that can 

satisfy green IoT demands in terms of finding optimal storage and data organization format suitable 

for sensors with limited power and bandwidth availability. The layer, patch and raster structure are 

proposed as three promising measurement schemes that differ in approaches related to storing and 

packaging of sensing measurements within an image. It is shown that each of the three proposed 

measurement structures restrains the image blocking artefacts and eliminate high memory 

requirements and huge computation complexity during image sensing and recovery. However, the 

layer structure shows the best results in terms of possible green IoT implementation since it has good 

rate and time-distortion performances and offers better visual quality than other structures. 
Work [138] addresses a lack of models for energy-efficient malware detection based on gaining 

knowledge about devices in an IoT environment with the Android operating system (OS). In the 

paper, adversarial samples vulnerability of learning-based malware detection models is tackled 

through the development of an automated testing framework that performs security analyses for IoT 

devices. In order to find an appropriate fitness function that can produce the corresponding sample 

without impacting the characteristics of the application, authors introduce generic algorithms and 

specific technical enhancements built-in proposed testing framework. Obtained results show that 

black-box testing of the system can be done by the proposed test framework, which can create 

effective samples with a rate of success equal to almost 100% for the application on IoT devices with 

Android OS.  
To eliminate drawbacks of authentication based on cipher approaches that are impacted by the 

large expenditures and energy constraints of smart devices, authors in [139] proposed a clustering-

based physical-layer authentication scheme (CPAS) for systems with asymmetric resources in the 

mobile edge computing (MEC) environment. To ensure two-way authentication among edge devices 

and terminals, CPAS as cross-layer secure authentication merge symmetric cipher and clustering 

with information related to the wireless channel. Theoretical analysis of developed CPAS approach 

shows that CPAS can be robust to replay, spoofing and integer attacks, while experimental results 

show that CPAS decreases the data frame loss rate and increase the overall success rate of access 

authentication, without enlarging authentication latencies. Therefore, the proposed scheme reduces 

the complexity of resource asymmetric authentication scenarios for the edge computing systems, 

which contributes to the reduction of power consumption during the authentication phase. 
In [140], the problem of the inter-tier interference mitigation in two-tier HetNets composed of 

pico-cells and underlying macro-cells has been considered. First, the near-optimal values of almost 

blank subframes (ABS) power reduction factor and pico-cell range expansion (CRE) bias are gained 

by an algorithm which uses equivalence relation between ABS and CRE for a given pico-cell base 

station (PBS) density. Also, by means of a linear search method, PBS density is optimized with the 
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known factor of power reduction and constant pico-CRE bias. Lastly, to maximize network energy-

efficiency of two-tier HetNets impacted with further-enhanced inter-cell interference, authors 

propose a heuristic algorithm for joint optimization of ABS power reduction factor, PBS density and 

pico-CRE bias. Results obtained through numerical simulations show that the proposed heuristic 

algorithm with a low complexity of computation can update the HetNets energy efficiency. 
The study presented in [141] extends preceding works that use the social behaviour of the mobile 

users to adapt the transmission speeds of messages used for the peer discovery in D2D networks 

under the user equipment′s (UEs) power consumption constraint. The authors introduce a three-

phase energy-ratio rate decision (ERRD) algorithm, which in the first phase schedules the power 

budget of the network among the UEs based on their social ratios and in the second phase, based on 

harvested energy, allocates power quantum of each UE. Finally, in the third phase of the ERRD 

algorithm, the UEs beacon transmission intensities are adjusted according to their designated 

quantum of power. Adjusting is performed under the limitation that the overall power scheduled to 

the UEs cannot be above the power quanta of the network budget. Results obtained through 

simulations of ERRD performance show that the proposed algorithm outperforms the previously-

reported algorithm by 8% and 190% on the peer discovery ratio, for a budget having the power of 20 

and 1 W, respectively. 
In paper [142], in order to improve the secure operation of industrial wireless sensor networks 

(IWSNs), a physical layer authentication based on deep learning is presented. Three different 

authentication methods for sensor nodes, more specifically the deep neural network (DNN), the 

convolutional neural network (CNN) and convolution pre-processing neural network (CPNN) have 

been used to deploy the PHY-layer authentication in IWSNs. According to simulation results 

obtained during the evaluation of algorithms performance, each algorithm can authenticate multiple 

nodes simultaneously trough lightweight authentication. However, the CPNN-based sensor nodes’ 

authentication method has the best trade-off between the shortening of algorithm authentication 

performance and the minimal training time of the algorithm. 
Paper [143] investigates the mobile directional charging vehicle (DCV) efficiency optimization 

in rechargeable wireless sensor networks (RWSN), through the implementation of wireless power 

transfer (WPT) on continuously working sensors. Authors initially design an approximation 

algorithm to define positions and charging orientations of the docking spots, with the constraints of 

maximizing the charging coverage utility and minimizing the total number of the DCVs docking 

spots. Then, an optimization of the DCVs energy charging is performed based on the developed 

moving path planning algorithm for the DCVs. Based on theoretical analyses and comprehensive 

simulation experiments, for the case of sparse networks, authors present that the efficiency of energy 

charging of the proposed DCV concept is better than those based on a model using the 

omnidirectional energy charging. 
Authors in the next accepted work [144] have analysed the problem of green networking from 

the sustainability point of view. Besides energy-aware routing, authors propose pollution-aware 

routing with new metrics like the percentage of non-renewable energy usage and CO2 emission 

factor. The proposed algorithm provides optimal control and data planes for these metric types and 

enables different routers scheduling and link bandwidth adaptations, while ensuring scheduling and 

adoption priority according to traffic demand requirements. The impact of the proposed algorithm 

enabling green routing was assessed for three different metrics. Obtained results show that the 

proposed pollution-aware routing algorithm can reduce CO2 emissions for 20% and 36%, if compared 

with energy-based and shortest path routing, respectively. 
A relaying system based on non-orthogonal multiple access (NOMA) in downlink transmission 

with the best amplify-and-forward radio-frequency energy harvesting relay was analysed in work 

[145]. Analyses are performed for a source node that exchanges information in parallel with multiple 

users and for the Rayleigh fading conditions lacking perfect RF channel state information. For such a 

system, authors develop expressions for the outage probability (OP), the optimal duration of energy 

harvesting which minimizes the OP and the ergodic capacities of each user. Based on numerical 

results obtained for the equal setting of parameters, the ergodic capacity of the whole system and 
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overall performance of the proposed NOMA relaying system outperforms an equal system with the 

orthogonal-multiple-access (OMA) relaying. 
Authors in [146] analyse the influence of using single and multiple relays on energy-efficiency 

and throughput of Long-Term Evolution-Advanced (LTE-A) networks, for different resource block 

(RB) allocation schemes. Energy-efficiency analyses for a single relay scenario is performed for the 

maximum throughput (MT) bisection-based power allocation (BOPA) algorithm, an alternating MT 

with proportional fairness (abbreviated SAMM) BOPA algorithm and SAMM equal power RB 

algorithm. Simulation results show that the SAMM BOPA algorithm ensures the best energy-

efficiency, while SAMM equal power algorithm provides the best fairness. For a multiple relay 

scenario, a two-step neural network (NN) algorithm (SAMM NN) is introduced. Algorithm exploits 

BOPA supervised learning for power scheduling and SAMM unsupervised learning for scheduling 

of RBs. Results obtained for multiple relays scenario shows that SAMM NN algorithm achieves better 

energy-efficiency in comparison with SAMM equal power and SAMM BOPA algorithms. 
Article [147] analyses the radio frequency fingerprinting identification (RFFID) approach 

dedicated to ensuring authentications for a high number of energy-limited user terminals working in 

the MEC environment. The proposed scheme combines a two-layer model with the use of non-

encryption RFFID for IoT terminals. In the first layer, the MEC devices perform access authentication 

after signal detection and RF fingerprint features extraction with database storage of collected 

features. In the second layer, implementation of machine learning algorithms through collected 

learning features and generated decision models is done in the distant cloud, which improves the 

speed of authentication. Through extensive simulations performed for scenario based on IoT 

implementation, the gained results indicate that the approach proposed in [147] can achieve lower 

device energy depletion and better recognition rate than the traditional RFFID method based on 

wavelet features. 
Paper [148] tackles the problem of scheduling consumer′s requirements and the achievable 

electricity provision from renewable sources through the demand-response (DR) model. The 

proposed DR model is centralised via the data collector called the ″aggregator″ which schedules 

consumer’s requirements for instantaneous power supply and supplied electricity from renewable 

energy sources in a home environment monitored through the implementation of IoT applications. 

Results of the proposed algorithm evaluation confirmed algorithm feasible costs of computation in 

different scenarios of consumer′s behaviour and versatile communities and households. Also, it is 

shown that the energy reallocation costs are mostly impacted by a consumer′s demand timeframe 

flexibility and a number of appliances. 
In [149], the challenge of optimizing the power consumption of network devices in DC by means 

of energy-aware traffic engineering was addressed. The authors propose an optimization approach 

based on a mixed-integer programming algorithm, which minimizes network devices′ energy 

consumption according to traffic load variations. The proposed approach was verified through 

simulations of versatile DC network topologies and obtained results demonstrate clear benefits in 

terms of DC power consumption reduction for different traffic volumes and DC network sizes. 

Furthermore, the proposed approach can be deployed as an implementation in the SDN paradigm, 

and therefore, it can be used in real practical implementations. 
In the review paper [150], the energy efficiency of the radio access and core parts of the 5G 

networks are surveyed, and open issues and challenges related to the achievement of green cellular 

access networks are discussed. An overview of techniques for energy-efficiency improvement at the 

BS level encompasses next techniques for 5G networks: dynamic on/off cell switching, interference-

aware energy efficiency control in UDNs, energy efficiency enhancement of BSs with radio resource 

control, connection management for 5G new radio, and energy-efficient cache-enabled BSs. Further 

analyses have been dedicated to the review of techniques for energy-efficiency enhancement at the 

5G network level which includes energy-efficient: resource sharing, resource allocation in NOMA, 

outdoor–indoor communications and virtualization techniques. Additionally, authors perform a 

survey of SDN technology for improving energy-efficiency which considers energy monitoring and 

management in 5G with included backhaul and fronthaul and energy savings approach based on the 
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utility of sleep mode. Finally, the authors give an overview of techniques based on machine learning 

for energy-efficiency improvement of 5G networks. 

 
 

6. Conclusions 

Just a decade ago, the energy consumption of ICT devices and systems have been postponed in 

network and device design. However, a point where energy consumption optimisation of ICT devices 

and systems have become the new frontier for competitive differentiation and innovation is reached. 

Having energy-efficient ICT systems and devices is no longer a nice-to-have feature, but the 

mandatory requirement for the networks of the upcoming digital age. This is confirmed in papers 

accepted for publication in the Special Issue on the green, energy-efficient and sustainable networks, 

which overview in terms of addressed topics and obtained outcomes are presented in this paper. 

Additionally, estimations and analyses of energy costs and CO2 emissions for different ICT systems 

in the period ranging up to the year 2030 are surveyed. Presented analyses confirm that ICT systems 

are at a critical point regarding current and future energy consumption of telecommunication 

networks, DCs and user-related devices. According to the presented estimations, current technology 

improvements of different ICT systems are not sufficient to keep up with the increasing energy costs 

and CO2 emissions. This is elaborated in this paper for the case of wireless networks and DCs, which 

energy consumption and CO2 emissions have the highest increase and contribution to the overall ICT 

energy consumption. This motivates the deeper investigation of technologies and concepts which can 

contribute to the improvement of energy-efficiency of these ICT sectors. As presented in this work, 

for the wireless networks, possible technologies that are analysed in this context include millimetre-

wave communications, long term evolution in unlicensed spectrum, ultra-dense heterogeneous 

networks, device-to-device communications and massive multiple-input multiple-output 

communication. Additionally, DC resource management, DCs power management, green DC 

monitoring and simulation and thermal management in DCs are discussed as possible options for 

improvement of DCs power usage efficiency. Although each of analysed techniques and concepts 

can bring some energy-efficiency improvements in the corresponding area of implementation, 

comprehensive analyses presented in this paper shows that there is no single technology or concept 

which will bring energy-efficient improvements to the whole ICT sector. Hence, to achieve more 

power-efficient and greener ICT systems in the future, the combination of different technologies and 

concepts in wired, wireless and DC part of communication networks with novel solutions for energy-

efficiency improvements of user-related and sensor devices must be devised. Only such an approach 

can result in a synergetic effect which will keep energy consumption and CO2 emissions of ICT 

systems at the lowest possible levels. 
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