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Abstract: Remote sensing is commonly performed via airborne platforms such as satellites,
specialized aircraft, and unmanned aerial systems (UASs), which perform airborne photography
using mounted cameras. However, they are limited by their coverage (UASs), irregular flyover
frequency (aircraft), and/or low spatial resolution (satellites) due to their high altitude. In this paper,
we examine the utilization of commercial flights as an airborne platform for remote sensing. Namely,
we simulate a situation where all aircraft on commercial flights are equipped with a mounted camera
used for airborne photography. The simulation is used to estimate coverage, the temporal and spatial
resolution of aerial imagery acquired this way, as well as the storage capacity required for storing all
imagery data. The results show that Europe is 83.28 percent covered with an average of one aerial
photography every half an hour and a ground sampling distance of 0.96 meters per pixel. Capturing
such imagery results in 20 million images or four petabytes of image data per day. More detailed
results are given in the paper for separate countries/territories in Europe, individual commercial
airlines and alliances, as well as three different cameras.
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1. Introduction

Remote sensing includes many applications such as [1]: planning towards sustainable agriculture,
monitoring and studying the bio-geological characteristics of oceans, water security and management,
environmental assessment and monitoring, disaster monitoring and mitigation, weather and climate
studies, and infrastructure development. All of these applications utilize aerial imagery as a remote
sensing approach in the form of raster geo-referenced images containing various spectral bands defined
by their wavelength and bandwidth. However, while bands depend on the features of a mounted
camera, the frequency acquisition of those images, coverage, and partly their resolution depend on the
object to which the camera is mounted [2].

On the one hand, due to their high altitude, satellites provide wide coverage at the expense of
image resolution, while unmanned aerial systems (UAS) excel in resolution, but lack in coverage [3].
Moreover, imagery taken from an aircraft provides optimal resolution and coverage. On the other
hand, both UAS and aircraft provide ad hoc frequency for aerial imagery due to their inability to
remain in the air for a long time, unlike satellites that orbit the Earth in regular intervals [2]. However,
these regular intervals usually count in days or hours, e.g., Sentinel satellites provide images every
4.5 days [4], which is insufficient for modern applications that go towards (near) real-time analysis [5].
Geostationary satellites compensate this by remaining over a single location; however, their coverage

Sensors 2020, 20, 1658; doi:10.3390/s20061658 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7691-582X
http://www.mdpi.com/1424-8220/20/6/1658?type=check_update&version=1
http://dx.doi.org/10.3390/s20061658
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1658 2 of 22

is limited by an extremely narrow ring in the plane of the Equator and lacks high resolution due to
their high altitude [5].

In this paper, we examine the feasibility of remote sensing by means of commercial flights,
where an aircraft is mounted with a camera and thus used as an airborne platform. A dataset from
Flightradar24 (www.flightradar24.com) is taken containing 32,459 flights over Europe in a single
day. Flight trajectories are interpolated and used for estimating the coverage, temporal, and spatial
resolution of aerial images, as well as their storage size, as if they were taken from those flights.
The simulation is performed by taking parameters for three different cameras, separately summarizing
data by airline companies and alliances, as well as by presenting results for all of Europe and each
European country/territory. The simulation results show that Europe is 83.28 percent covered with
aerial photography every half an hour with an average spatial resolution expressed as a ground
sampling distance (GSD) of 0.96 meters per pixel. Such an airborne platform produces 20 million
images or 5 petabytes of image data per day.

More detailed results show that the Star Alliance alone covers 57.80 percent of Europe with 5.56
daily flyovers on average over a certain area, which results in over 500 terabytes of data. By looking
at individual airline companies, Ryanair alone covers 34 percent of Europe. Combined with Turkish
Airlines, they cover half of Europe. Moreover, half of Europe is covered by at least 10 airlines and
by at least one flight every hour. The most flyovers per day are achieved for Turkey and Germany
with 1306 and 1094 flyovers, respectively. However, the highest average number of flyovers is given
for Luxembourg with 224 flyovers per day. Finally, the best spatial resolution is achieved for smaller
countries/territories in Europe such as the Vatican, Gibraltar, and Monaco, while France, Germany,
and Spain require the most storage capacity.

According to our knowledge, this is the first paper that analyses the applicability of airline
operated commercial aircraft for transporting passengers and cargo as a platform for aerial imagery.
The goal of the paper is to answer the question related to the applicability of exploiting commercial
flights as an airborne platform for performing aerial imagery in the context of coverage, the temporal
and spatial resolution of aerial images, as well as their storage size.

The rest of the paper is structured as follows. Section 2 gives an overview of aerial imagery
and relevant work. The methodology used in this work is explained in Section 3 with results
presented in Section 4. Finally, a discussion and conclusion with future work are given in
Sections 5 and 6, respectively.

2. Background

The term remote sensing is used to describe information gathering from a distant target, i.e., an
object or a phenomenon, without making physical contact with the target [2]. It is typically done by
using satellites, aircraft, and recently UAS [6], which collect data reflected from the Earth’s surface.
The information is acquired through different signals such as electromagnetic radiation, force fields, or
acoustic energy, where the signal is either created by the sensor (active sensors) or is found in nature
as-is (passive sensors) [7]. Active sensors send a signal towards the target and then read it as it reflects
from the target, while passive sensors collect data that are naturally reflected by the target. That being
said, an advance of satellite and UAS technologies has made aerial imagery a relevant source of passive
sensor data for remote sensing [3].

Aerial imagery, also known as airborne photography, is based on taking images of the Earth’s
surface from a flying object(s). Since the first airborne photography taken by G. F. Tournachon in
1858 from a hot air balloon just outside Paris, flying objects as platforms used for aerial imagery have
radically changed [6,8]. During the last more than 160 years, besides hot air balloons, platforms used
for aerial imagery include blimps, kites, fixed-wing manned aircraft, rockets, pigeons, parachutes,
helicopters, unmanned aerial vehicles (UAVs or “drones”), and satellites [6].

Among all mentioned flying platforms used for aerial imagery, manned aircraft historically
played an important role and are still seen as a classical sensing platform for aerial imagery. The first
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known airborne photography was taken from the airplane over Le Mans, France. by L. P. Bonvillain in
1908 with the airplane inventor W. Wright as a pilot [9]. Massive usage of aerial imagery taken from
cameras installed on fixed-wing manned aircraft started in World War One (WW-I) for the purpose
of reconnaissance missions, which resulted in up to then thousands of images per day taken during
the middle of the WW-I. By the beginning of the Second World War (WW-II), the interpretation of
aerial imagery taken from the aircraft started to be used in many different fields and applications
such as agriculture, archeology, forestry, glaciology, etc. [10]. Vast usage of aerial imagery taken from
manned aircraft continued during WW-II. Besides military reconnaissance purposes used on all sides
during WW-II, aerial photography taken from the aircraft entered in the media such as newspapers,
magazines, and movies [6,8].

After WW-II, manned aircraft become the most often used means for ensuring the platform for
aerial imagery, which enabled different professions and industries to have more powerful options
in photographing, measuring, surveying, and mapping different spaces and places. For instance,
the usage of cameras placed on fixed-wing manned aircraft enabled the development of different
disciplines such as photogrammetry, which provides object’s geometric information derived with the
help of image measurements [10]. Moreover, remote sensing with the use of aerial survey cameras
mounted on fixed-wing manned aircraft significantly contributed to the development of Geographic
Information Systems (GIS), which are based on generating huge volumes of digital images needed for
geocoded rectification and analysis [10,11]. Besides historical usage of aircraft as a platform for aerial
photo or video imagery, the latest advancements in areal remote sensing ensure that aircraft become
one of the most important platforms for caring airborne laser imaging detection and ranging (LiDAR)
systems [10]. Such systems enable automated acquisition of three-dimensional (3D) representation of
objects by measuring the reflected laser light to which objects are exposed. Additionally, aircraft as the
airborne platform are used for hosting sensing equipment, which works in multispectral, hyperspectral,
and microwave frequency bands [12].

According to the forecasts, the global remote sensing service market was estimated at USD 9.70
billion in 2016, and with a projected compound annual gross rate (CAGR) of 15.14% from 2017 to
2022, it will reach USD 21.62 billion by 2022 [13]. Although the remote sensing service market based
on manned aircraft is comprised of many segments and applications, the following main segments
currently dominate the market: precision farming, coastal analysis, mineral exploration mapping,
disaster management, pipeline monitoring, defense, and intelligence [13]. As an important part of the
global remote sensing market, the global aerial imaging market was estimated at USD 1.439 billion in
2017, where UAS and fixed-wing manned aircraft took almost equal parts of ca. 45% in the overall
share of all remote sensing platforms [14]. Forecasts for the period 2018-2025 show an increase of the
global aerial imaging market with CAGR (Compound Annual Growth Rate) of 14.2%, which results in
the global aerial imaging market reaching USD 4.125 billion by 2025.

Despite estimations of the forecast domination by the usage of UASs, and more specifically small
UAS (sUAS) [3], as a platform in global remote sensing by 2024 (with aerial imaging market share
of 78% in comparison with other remote sensing platforms) [15], fixed-wing manned aircraft will
continue to have an important role as a platform for remote sensing in the form of aerial imagery.
The reason can be found in the essence of fixed-wing aircraft as a sensing platform, which can be used
for quick and frequent log-range and vast area remote sensing (aerial imagery) [16]. This explains why
the exploitation of fixed-wing aircraft as a remote sensing platform will remain irreplaceable for many
specific sensing purposes and applications.

Conventional fixed-wing aircraft currently used for remote sensing vary in size from small
single-engine piston-powered airplanes to sophisticated multi-engine propeller or jet airplanes [17].
The selection of the aircraft for aerial imagery is generally based on the meteorology and geography of
the surveying area, the operating and capital costs, the operators’ intended use, performance, safety,
maneuverability, and ease of the airplane adaptation to the remote-sensing operations [18].
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Fixed-wing aircraft used for remote sensing are usually based on adapted light aircraft or military
types of aircraft. Aircraft adaptations can be expensive, and it is generally more economical to select
an aircraft that requires minimum adaptations. For that reason, this paper analyses the possibility of
performing aerial imagery with commercial fixed-wing manned airliners during their regular flights
as the airborne platform.

3. Methodology

The characteristics of aerial imagery are defined by four resolution types, namely spatial, spectral,
temporal, and radiometric resolution [2,3].

• Spatial resolution is defined as the smallest object that can be resolved from the remote sensing
image. It is commonly measured as the ground sampling distance (GSD), which defines a distance
between the centers of two pixels, i.e., a ground sampling distance of 10 meters means that every
pixel of an image obtained by the sensor covers a ground area of 10 m × 10 m.

• Temporal resolution represents the frequency at which a sensor reads a new value, e.g., a temporal
resolution of 5 days means that the sensor takes a new aerial image every 5 days.

• Spectral resolution refers to the number of spectral bands a remote sensor is capable of reading, e.g.,
basic remote sensors can detect only visible light in red, green, and blue bands, while advanced
ones can read multiple narrow bands in the higher and lower spectrum, such as near-infrared.

• Radiometric resolution is the ability of a remote sensor to distinguish small differences in
electromagnetic energy, e.g., within a single band, a sensor can distinguish 8 bits of data, which
equals 256 different values, which is then stored as a value of a single-pixel in an aerial image.

In this paper, we focus on spatial and temporal resolutions, as these characteristics are affected by
an airborne platform, namely its flyover frequency and altitude. Spectral and radiometric resolutions
are direct products of the used camera and are thus out of the scope of this paper. However, since
spatial resolution is also affected by the used camera, we include it in our analysis by applying the
characteristics of three different cameras in our simulations and compare the results. In order to
estimate coverage, the temporal and spatial resolutions of aerial images, along with their data size as if
they were acquired from commercial aircraft during their regular flights, five steps are required:

1. The dataset containing positions and altitudes of commercial flights over a certain area, as well as
some additional metadata information for more comprehensive analysis.

2. Interpolation of the dataset containing flight trajectories, as well as polygons representing the
viewpoint of a camera mounted on an aircraft taking into consideration flight trajectory, altitude,
as well as camera characteristics.

3. Projection of the land mass and trajectories onto the map, which is required for calculating area
size, coverage, and other statistics.

4. Account for the overlapping of images to follow a common practice in airborne photography
where images are taken successively to cover a certain area with more than one image.

5. Data clustering and analysis based on polygon intersections between flights themselves, as well
as individual countries. Moreover, additional data clustering is done based on flight metadata,
such as individual airlines or alliances.

All five steps are described in the following subsections, namely Sections 3.1–3.5.

3.1. Flight Dataset

In this work, we utilized data contributed by Flightradar24 AB, which provides a professional
data service of historic flight position data based on the recorded positions of live aircraft.
Data were acquired from a network of receivers that capture ADS-B (Automatic Dependent
Surveillance-Broadcast) or mode-S (Selective) transponder signals from aircraft. Transponder data were
then combined with Flightradar24’s reference database in order to get a complete dataset containing
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all relevant information. The resulting dataset was comprised of two segments, namely flight data and
trajectory data, as depicted in Tables 1 and 2, respectively.

Table 1. Metadata of the dataset segment containing the flight data. ICAO, International Civil
Aviation Organization.

Data Field Description Example

Flight ID Unique identifier for the flight 246321073
Aircraft ID 24 bit mode-S identifier in hexadecimals 3754508
Registration Aircraft registration matched from the aircraft address FGSQM
Equipment ICAO aircraft designator, mapped from the address B77W
Call sign Up to 8 characters as sent from the aircraft transponder AFR995
Flight number Commercial flight number, interpreted from the call sign AF995

ICAO Airline three letter ICAO identifier extracted from the call sign AFR
Airline Name of an airline mapped with ICAO Air France
Alliance Alliance to which the airline belongs SkyTeam

We used the call sign from Table 1 to extract the ICAO (International Civil Aviation Organization)
three letter airline code and map it to the airline name, as well as an alliance to which the airline
belongs. The equipment and aircraft ID were used to filter out airport ground vehicles and private
aircraft, while the flight number and call sign were used to identify commercial flights. The flight ID
was used to identify flights uniquely and map trajectory data to them from Table 2.

Table 2. Metadata of the dataset segment containing the trajectory data.

Data Field Description Example

Snapshot ID Time of position update in seconds since 1 January 1970 00:00:00 UTC 1 504 228 476
Altitude Height above sea level, in feet 10,972.80
Latitude Floating point format 36.48667
Longitude Floating point format 6.57222
Speed Ground speed in knots 838.96

Aircraft positions were updated every 5 seconds during take-off and landing due to a rapid
change in direction, and updating was increased to a maximum of 60 seconds during steady flight.
Moreover, the availability of the aircraft positional data was strictly dependent on the transponder
broadcast and the coverage of a nearby receiver in the geographical region in which the aircraft was
flying. Consequently, estimated flight positions were excluded for areas with no direct coverage
available, as well as for those that had their information restricted or blocked.

To summarize, the dataset used in this research contained 47,126 trajectories recorded during a
single day, namely 31 January 2018 over Europe, out of which 32,459 were identified as commercial
flights (passenger or cargo). Others included airport ground vehicles, private aircraft, flights without
a call sign, UFOs (i.e., unidentified flying objects, which refer to objects that were not identified as
commercial or private aircraft, rather then an extraterrestrial life form or aliens), and grounded flights
(i.e., flights that were recorded only taxiing on the ground). Actual commercial flights were done by
363 different companies and 7392 unique aircraft, with a total of 7,007,801 positions and their altitudes,
which were used for interpolating flight trajectories. Figure 1 depicts the trajectories of all commercial
flights from the described dataset.
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Figure 1. Visualization of all flight trajectories from the dataset (map tiles by ESRI, ArcGIS licensed
under the ESRI Master License Agreement).

3.2. Interpolating Flight Trajectories

The aircraft trajectory data described above were used for generating flight trajectories, as well as
polygons representing a continuous field of view (FOV) for a moving camera mounted on an aircraft.
For this purpose, several cameras were selected, going from entry point cameras to professional
cameras commonly used for satellite imagery, for interpolating FOV polygons as if cameras were
mounted on the aircraft from the dataset. Table 3 lists the used cameras and their characteristics.

Table 3. Characteristics of the cameras used in the simulation.

Camera Focal
Length
(mm)

CCD
Width
(mm)

CCD
Height
(mm)

Horizontal
Pixels

(#)

Vertical
Pixels

(#)

Image
Size
(MB)

FOV
Horizontal

(m)

FOV
Vertical

(m)

Canon A2400 5 6.17 4.55 4608 3 456 46 63.35 48.93
Sony A7 28 35.8 23.9 6000 4 000 69 65.18 46.22
Imperx T9040 35 47 22 10,440 4 800 207 67.76 34.89

Firstly, the angle of view (AOV) for each camera was calculated using Equation (1), both for
horizontal (AOVh) and vertical (AOVv) angles depicted in Figure 2, where s represents either the width
or height of the sensor in millimeters, while f stands for the focal length. Table 3 shows the calculated
AOV values for all selected cameras.

AOV[DEGREES] = 2 · arctan(
s

2 · f
) · (180

Π
) (1)

Secondly, the field of view (FOV) was calculated for each recorded position by taking its altitude
h and previously calculated AOV, as shown in Equation (2). The obtained value represents either the
horizontal (FOVh) or vertical (FOVv) distance in meters, as depicted in Figure 2. On the one hand, the
horizontal distance was used for creating polygons representing continuous FOV for estimating land
coverage and the spatial and temporal resolution. On the other hand, vertical distance was used for
estimating the number and size of the images acquired during a flight in order to obtain a continuous
landscape image.

FOV[METERS] = 2 · tan(
AOV

2
) · h (2)
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h

FOVv

FOVh

AOVv

AOVh

Figure 2. Field of view (FOV ) in relation to the angle of view (AOV) and aircraft altitude h.

Polygons were created for each flight separately, where each polygon represented the FOV of a
single aircraft during its flight. For instance, three polygons are depicted in Figure 3 representing three
flights, i.e., three aircraft taking off from Rome Fiumicino Airport. Their FOV was very narrow during
take-off, while it became broader as the aircraft gained altitude. Additionally, Figure 3 shows three
different polygons for each flight representing three different cameras from Table 3. Canon A2400 had
the smallest coverage depicted in red, while Sony A7 and Imperex T9040 covered additional areas
depicted in yellow and blue, respectively.

Figure 3. Example of trajectory interpolation and field of view polygons for three aircraft (map tiles
by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under Open Data Commons Open
Database License).

3.3. Projecting Flights onto a Map

Polygons created in the previous section were represented with geodetic coordinates, i.e., latitudes
and longitudes. In order to calculate their area size, they were translated into plane coordinates,
which was performed by projecting the polygons onto the map. We used the EPSG:3035 (EPSG
Geodetic Parameter Dataset: https://epsg.io/3035) also defined as ETR S89 (European Terrestrial
Reference System 1989) Coordinate Reference System (CRS) that targets Europe, along with the
Lambert azimuthal equal area (LAEA) [19] map projection commonly used for statistical mapping

https://epsg.io/3035
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where true area representation is required. The true or equal area was required when drawing polygons
onto the map and calculating statistics from the generated heat map, such as temporal resolution.
Otherwise, the calculation would provide disproportional values for northern countries when using
Mercator map projection, for instance.

3.4. Overlapping the Images

In order to avoid the loss of data and achieve higher accuracy in image processing, aerial imagery
is commonly taken with some redundancy by overlapping the images. An overlap is defined as the
amount by which one image includes the area covered by another image, commonly expressed as
a percentage. It comprises two types, namely forward overlap and lateral overlap [20]. The former
defines an overlap between images along the same flight line as depicted with O f in Figure 4, while the
latter defines an overlap between images on adjacent flight lines as depicted with Ol in the same figure.

Flight trajectory

#1

#4

#2 #3

Of

Ol

#5

Figure 4. Forward and lateral overlap in aerial imagery.

On the one hand, we used forward overlaps in this paper to estimate the number of images taken
on each flight. The estimation was used for calculating storage capacity in terabytes required for
storing all acquired images. The minimum required forward overlap is 60 percent, as suggested in [20].
On the other hand, lateral overlaps are commonly used during planned flight routes, such as satellite
trajectories or drone survey flights. Their common value is between 25 and 30 percent. However, since
commercial flights did not follow topographical mapping routes, they were not used in this paper.

3.5. Clustering Results Approach

All analysis was done over 52 countries and territories listed in Table 4 and depicted in Figure 5.
Note that the selection of countries and territories was done based on the coverage of the dataset
and the availability of geojson features, which are part of the European land mass. That said,
the simulation results represent the entirety of Europe, as well as each country separately where
necessary. Furthermore, results for different cameras listed in Table 3 are also presented separately
where appropriate.
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Figure 5. Area covered by the dataset.

Table 4. Countries and territories covered by the dataset.

Aland Finland Latvia Romania
Albania France Liechtenstein Russia
Andorra Germany Lithuania San Marino
Austria Gibraltar Luxembourg Serbia
Belarus Greece Macedonia Slovakia
Belgium Guernsey Malta Slovenia

BiH Hungary Moldova Spain
Bulgaria Iceland Monaco Sweden
Croatia Ireland Montenegro Switzerland
Czechia Isle of Man Netherlands Turkey

Denmark Italy Norway Ukraine
Estonia Jersey Poland U.K.

Faroe Islands Kosovo Portugal Vatican

In order to provide more fine-grained results, the dataset was further clustered by individual
airlines and alliances, that is the results for land coverage, temporal and spatial resolution, and storage
capacity were given in total, as well as for different clusters of airlines and alliances. As previously
mentioned, the dataset contained flights from 363 different airlines, where some of them are members
of one of three alliances, namely OneWorld (www.oneworld.com), SkyTeam (www.skyteam.com), and
Star Alliance (www.staralliance.com). Table 5 shows some basic statistics of alliances from the dataset.

Table 5. Alliance statistics from the used dataset.

Alliance Flights Airlines 1 Aircraft 2 Distance (km) Points Altitude (km) ** Speed (km/h) **

OneWorld 2216 14/14 670/3 186 3,254,869 496,162 9.74 815.19
SkyTeam 3808 18/19 957/3 990 4,458,307 835,335 9.09 787.45

Star Alliance 4096 22/24 933/3 142 4,959,337 905,098 9.26 787.93
Other 22,339 309 4 832 26,453,450 4,771,206 9.22 777.44

TOTAL 32,459 363 7392 39,125,963 7,007,801 9.25 783.05
1 Total number of airlines in the alliance (source: official websites); 2 Total number of aircraft in the alliance
(source: www.flightradar24.com); ** Values are calculated as the weighted averages based on a traveled distance.

Due to the variable sampling rate of a transponder depending on the aircraft activity as described
in Section 3.1, all averaged statistical values were weighted against the traveled distance. For instance,
altitude and speed values in Table 5 represent weighted averages of altitude and speed, respectively.
This way, we mitigated biased results of the values that were collected more frequently. The same
approach was taken for all other calculations performed in this paper unless otherwise stated.

www.oneworld.com
www.skyteam.com
www.staralliance.com
www.flightradar24.com
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4. Results

In this section, we apply our methodology described in the previous section on the dataset
and present the results for four different aspects, namely land coverage, the temporal and spatial
resolution, as well as required storage capacity for implementing such an aerial imagery system based
on commercial flights as an airborne platform.

4.1. Land Coverage

Land coverage represents an area that is covered by aerial imagery taken from commercial flights
as if they were mounted with cameras. Three cameras were used, namely Canon A2400, Sony A7,
and Imperx T9040, as an industry camera for aerial imagery, all listed with their characteristics in
Table 3. As seen in Figure 6, all cameras exhibited similar land coverage due to their similar FOV
values, which determined the area captured by the camera (also seen in Figure 3). Consequently,
further analysis for land coverage was done only with Imperx T9040.

0 20 40 60 80 100
Land coverage [%]

Imperx T9040
Sony A7

Canon A2400

Figure 6. Land coverage of the entirety of Europe by individual cameras.

Figure 7 depicts land coverage by Imperx T9040 over Europe with visible country and territory
borders. Western, Central, and Southern Europe are almost entirely covered, while the east and north are
scarce. More detailed coverage is depicted in Figure 8 showing percentages for each country separately
(background red). Bordering countries such as Spain, Greece, Malta, and Iceland exhibited slightly
lower land coverage, while Russia and Ukraine were only 60 percent covered. All other countries were
almost one hundred percent covered, while the entirety of Europe was covered by 83.28 percent.

0 km 1000 km

Large

Covered Not covered

Figure 7. Land coverage of European countries/territories by all flights with Imperx T9040.
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Figure 8. Land coverage by all flights (background red) and individual alliances (monochrome bars)
with Imperx T9040.

Figure 8 also shows land coverage percentages for individual alliances. Slightly higher coverage
was exhibited by Star Alliance (57.80%) for the entirety of Europe, mostly due to its better coverage of
east and southeast Europe. This includes countries such as Moldova, Ukraine, Turkey, and Greece, as
seen both from the graph, as well as Figure 9, depicting land coverage maps for each alliance separately.
OneWorld and SkyTeam covered 53.34% and 54.30%, respectively.

Covered by alliance Covered by all flights Not covered

(a) OneWorld (b) SkyTeam (c) Star Alliance
Figure 9. Land coverage by individual alliances with Imperx T9040.

Since the land coverage for an alliance depends on its individual members, we performed a
detailed analysis for each airline within the alliance as well. The results are displayed in Figure 10.
The figure depicts land coverage by each airline (monochrome bars), cumulative coverage when
adding airlines together from left to right (line), as well as the contribution by each airline to the
cumulative land coverage (red bars). The airlines are ordered in descending order by their individual
land coverage. Thus, it should be noted that their contributions directly depended on this order, i.e.,
the first airline always had 100 percent contribution, while the second one having some overlaps with
the first one would immediately have a contribution below 100 percent.
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(c) Star Alliance

Figure 10. Cumulative land coverage by individual airlines within alliances with Imperx T9040.

As seen in Figure 10c, the better coverage by Star Alliance could be explained by the dominant
Turkish Airlines that alone covered above 30 percent of Europe, while for SkyTeam, three airlines had
a dominant contribution, namely Air France, KLM, and Aeroflot, as depicted in Figure 10b. OneWorld
in Figure 10a had a very logarithmic coverage contribution by its members, with British Airways still
covering above 25 percent alone.

We also performed land coverage analysis by individual airlines regardless of their alliance
memberships, thus including those airlines that were not part of any alliance as well. Figure 11 shows
that the largest land coverage by individual airline was achieved by Ryanair covering around 34
percent of Europe alone. Combined with Turkish Airlines from Star Alliance, they covered almost
half of Europe. The other biggest contributors were Lufthansa and British Airways, covering central
Europe, as well as airlines covering bordering areas such as Russian Aeroflot and Scandinavian SAS
and Finnair.
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Figure 11. Cumulative land coverage by top 30 airlines with Imperx T9040.

Finally, we depict a heat map in Figure 12 showing the land coverage by number of airlines, i.e.,
darker red color means that more airlines cover that area. It is evident from the figure that Central and
southeast Europe were common routes for most of the airlines. The related graph depicts cumulative
coverage by the number of airlines, showing that if at least 10 airlines were required to cover a certain
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location, the land coverage would be almost 50 percent. If at least one airline was required, the land
coverage would be 83.28 percent, as previously calculated.
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(b) Cumulative land coverage by number of airlines
Figure 12. Land coverage by number of airlines flying over with Imperx T9040.

4.2. Temporal Resolution

Temporal resolution defines the time-frequency for taking aerial imagery, or more specifically for
our case, the number of aircraft that fly over a certain area in a single day, i.e., 31 January 2018. Since
the temporal resolution of a certain area directly depends on the land coverage, we continued our
simulation only with Imperx T9040 as before, as all cameras gave similar coverage results, as seen
in Figure 6. Figure 13 depicts the land coverage heat map, i.e., the number of flyovers in a single
day, where the intensity of red color defines higher flyover frequency. Again, the results showed that
83.28 percent of Europe was covered by at least one flight per day. However, the results for temporal
resolution also showed that over 60 percent was covered by at least 10 flights per day and almost
50 percent every hour on average. Most flyovers counted up to 1306 flights in a single day over a
single point in Europe, while the average number of flyovers for the entirety of Europe was 42, i.e.,
if an image was taken on every flight, this would result in one aerial image every half an hour on
average. A more detailed study was performed for each country in Europe, where the average number
of flyovers in a single day was calculated, along with the maximum and minimum number of flyovers
and their standard deviation. Results are depicted in Figure 14.

As seen from Figure 14, those 1306 flyovers previously calculated were located in Turkey. However,
while having the highest number of flyovers, Turkey exhibited high deviation around its mean value
of 43 flyovers. The second highest number of flyovers was exhibited by Germany with 1094 flyovers
at maximum. However, there were 117 flyovers on average across the country with a considerably
smaller deviation than in Turkey, i.e., the entire country was more evenly covered. Furthermore, the
highest average number of flyovers was calculated for Luxembourg with 224 flyovers, which translated
to one flyover every six minutes on average during a day. Other countries such as Monaco, San Marino,
and Vatican also exhibited high coverage with a small deviation due to their small size and position.
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Figure 13. Number of flyovers by all fights with Imperx T9040.
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Figure 14. Temporal frequency (number of flyovers in a single day) for all flights using Imperx T9040.

A similar study was performed for individual alliances, namely OneWorld, SkyTeam, and Star
Alliance for the entirety of Europe. Figure 15 depicts basic statistics for each alliance with 3.45, 4.65,
and 5.56 average daily flyovers, respectively. The graph also shows that higher coverage and temporal
frequency for alliances gave higher deviation as flights were more scattered around Europe. This is
also visible in Figure 15a–c, depicting temporal heat maps for all three alliances, respectively.
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Figure 15. Temporal frequency for individual alliances with Imperx T9040.

4.3. Spatial Resolution

In this paper, we measured spatial resolution through GSD defined as an area size covered by a
single pixel. This value depends directly on the altitude of an airborne platform, i.e., an aircraft, as
well as the characteristics of the mounted camera. Consequently, in this simulation, we presented the
results for all three used cameras. Figure 16 depicts GSD for all three cameras covering individual
countries and territories in Europe, as well as the entirety of Europe.
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Figure 16. Spatial resolution expressed as GSD for individual countries/territories with the
three cameras.

The results showed that the average GSD for Europe was 0.96 meters per pixel with the Imperx
T9040 camera, and only slightly worse for Sony A7 and Canon A2400, namely 1.58 and 1.98, respectively.
The best average GSDs, namely below 0.5 meters per pixel, were achieved for countries/territories
such as Vatican, Gibraltar, and Monaco due to their small size and vicinity to airports where aircraft fly
at low altitudes. However, the worst average GSDs achieved for Belarus, Romania, and Hungary were
still below three meters per pixel for all cameras. More detailed localization of average GSD across
Europe for Imperx T9040 is shown in Figure 17.
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Figure 17. Spatial resolution expressed as average GSD for all flights with Imperx T9040.

Darker red color in Figure 17 depicts better average spatial resolution, while white color depicts
no coverage at all. As seen from the figure, the best spatial resolution was achieved in the areas around
airports, such as Moscow, Kyiv, Warsaw, Berlin, Barcelona, Madrid, and London. Less obvious airports
were Frankfurt and Paris as these were overflown by a vast number of high-altitude flights, which
consequently deteriorated the statistical value of the mean.

4.4. Storage Requirements

Deploying an airborne platform for remote sensing based on commercial flights requires a
sufficient capacity for storing all acquired images. In this section, we estimate how much data were
collected during a single day in the case when commercial flights were utilized as airborne platforms.
We also accounted for 60 percent of image forward overlap, as suggested in [20], which generally
increases the number of acquired images. The total number of images acquired for the entirety of
Europe in a single day by all three cameras is depicted in Figure 18.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of images [#] ×106

Imperx T9040
Sony A7

Canon A2400

Figure 18. Number of acquired images in a single day for the entirety of Europe from all flights.

Results in Figure 18 show that Imperx T9040 acquired over 20 million images in a single day,
while Sony A7 and Canon A2400 acquired nearly 15 and 14 million images, respectively. While Imperx
T9040 achieved wider horizontal coverage than other cameras (Figure 3), due to the smaller CCD
height and consequently lower vertical FOV (Table 3), it achieved smaller vertical coverage along the
flight trajectory. Consequently, it required more images to cover the same distance. Moreover, due
to a larger image size (Table 3), it required more storage capacity as depicted in Figure 19. Namely,
Imperx T9040 stored nearly four petabytes of aerial images in a single day, while Sony A7 and Canon
A2400 stored almost one and 0.6 petabytes, respectively, due to the smaller image size and number of
acquired images.

0 500 1000 1500 2000 2500 3000 3500 4000
Storage capacity [TB]

Imperx T9040
Sony A7

Canon A2400

Figure 19. Storage required for storing images for the entirety of Europe in a single day from all flights.
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Figure 20 depicts a heat map of the storage capacity required for storing all aerial imagery with
Imperx T9040, where darker red means more data, while white means few or no data at all. The storage
capacity shown in the figure is essentially a function of spatial and temporal resolutions depicted in
Figures 13 and 17, respectively. In other words, the storage size depends on the number of flights over
a certain area and the altitude of those flights, i.e., lower altitudes result in a larger number of images.

0

20

40

60

80

100

Storage capacity [TB]]

Not covered

0 km 1000 km

Figure 20. Storage required for storing aerial images taken from all flights with Imperx T9040.

Consequently, the most storage capacity was required for the London area (approximately
100 TB), followed by Paris (approximately 59 TB) and Frankfurt (approximately 57 TB), which all
represent major international airports. Note that these values were given only as examples for a single
squared pixel closest to the referenced cities in Figure 20. More detailed values are given for separate
countries/territories in Figure 21.
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Figure 21. Storage required for storing images for individual countries/territories with Imperx T9040.

The results in Figure 21 show that the largest storage capacity was required for France, followed
by Germany, Spain, the U.K., and Russia. As previously mentioned, storage capacity is a function of
spatial and temporal resolutions and, in this case, the size of a country/territory as well. This explains
why these countries were in the top five. Further analysis was done for three different alliances, as well
as the top ten individual airlines when using Imperx T9040.

Results in Figure 22 show that Star Alliance alone required over 500 terabytes of storage, which was
one eighth of the entire capacity depicted in Figure 19. Star Alliance was followed by SkyTeam alliance
and Ryanair, rather then OneWorld alliance. That said, Ryanair alone required almost 350 terabytes of
storage capacity to store all data. Each aircraft regardless of the airline stored 126 gigabytes of data per
flight on average, which included 625 images using Imperx T9040. It should be noted that this amount
accounted only for images taken above land, i.e., excluding seas and oceans.
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Figure 22. Storage required for storing images of the entirety of Europe by individual alliances
and airlines.

5. Discussion

The dataset used in this research included a single day for performing a simulation. Since
commercial flights are planned according to a certain schedule, which is commonly defined on a daily
basis for domestic and on a weekly basis for international flights, and are scheduled several months
in advance with regards to seasonal demand [21], obviously different results would be obtained for
different days in a week and for different seasons. However, these results still give valuable insights
into the feasibility of using commercial flights as airborne platforms for remote sensing. Moreover,
since the dataset used in this research came from the beginning of 2018, coverage had probably
increased by 2020 due to an annual increase in air traffic by 1.9 percent [22].

Furthermore, since the used dataset included only Europe, a similar observation could be made
by examining the spatial dispersion of the air traffic. According to IATA (International Air Transport
Association: www.iata.org), Europe holds 26.3 percent of the entire world’s air traffic, while the Asia
Pacific and North America hold 34.3 and 22.4 percent, respectively. Due to the larger size of the
two continents, expected coverage and acquired average resolutions may be lower than for Europe.
However, as reported by ICAO (International Civil Aviation Organization, UN specialized agency:
www.icao.int) [23] and also seen in Figure 23, flights are unevenly dispersed across the two continents,
and thus, the east coast of the U.S., Japan, and North China may achieve even better results than
Europe. Finally, Africa, the Middle East, and Latin America exhibit significantly scarcer air traffic,
comprising only 2.2, 10.4, and 4.5 percent of the world’s air traffic, respectively. Another aspect of
aerial imagery that has to be taken into an account is the presence of clouds and Sun patterns, e.g., day
and night. While Sun patterns are predictable and can be accounted for, clouds have an unpredictable
behavior and significantly diminish a number of usable aerial images in the visible spectrum [24].
According to [25], containing data for average cloud cover in January 2018 (which is the same month as
in the dataset used in this paper), most of Europe exhibits at least 62.5 percent of cloud cover, with the
exception of the Mediterranean coast. Moreover, there are also daily variations of cloud cover, namely
during summer months, there is a clear peak in the afternoon hours and a minimum at nighttime,
while winter months in Europe show no significant diurnal variability [25]. Annual cloud cover is
somewhat better, as seen in [25] (Figure 24b); however, most of Europe still exhibits 50 percent of
cloud cover.

The limitations of aerial imagery due to the fact that Earth is on average 63 percent cloud-covered
each day [26] is a challenge for other airborne platforms, as well, such as satellite platforms and
high-altitude aircraft used for aerial imagery [27]. This issue has been tackled by different studies in
the context of cloud cover estimation [25,28], cloud removal [29,30], as well as optimization of flight
schedules [26]. Similar approaches can be applied in the context of this paper as well; however, a more
comprehensive study on this subject is out of the scope of this paper.

www.iata.org
www.icao.int
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Figure 23. Global flight network (source: Wikimedia Commons, https://commons.wikimedia.org/
wiki/File:World-airline-routemap-2009.png).

(a) January 2018, monthly mean (b) Entire year 2018, annual mean
Figure 24. Cloud fractional cover (Source: Deutscher Wetterdienst, www.dwd.de).

The challenges described above are somewhat limited to the visible spectrum, which was the
main focus of this paper. However, the results of this study could be applied for other spectra, as
well. For instance, commercial aircraft can be equipped with Synthetic Aperture Radar (SAR) or
with near-infrared (NIR) cameras that can (partly) penetrate clouds [31] and thus mitigate the cloud
limitations. That said, going beyond remote sensing in the form of aerial imagery, usage of commercial
flights could be extended to different types of sensing, as well, such as meteorological parameters, as
proposed in [32]. The results obtained in this study could also be used to provide some insights into
the the usability of commercial flights for those scenarios, as well.

Finally, in order to realize fully the scheme proposed in this paper, one would require a complete
system design by adapting aircraft with mounted cameras, installing onboard storage, securing the
uplink to cloud storage at airports, implementing image transformation algorithms that can sync
geometric and spectral characteristics of acquired images, as well as solving the organizational,
standardization, legal, and financial challenges of coordinating different airlines, assuring that all
partners follow the same standards, and so forth. However, answering these questions is out of the

https://commons.wikimedia.org/wiki/File:World-airline-routemap-2009.png
https://commons.wikimedia.org/wiki/File:World-airline-routemap-2009.png
www.dwd.de
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scope of this paper, as the goal of this paper is to give insights into the benefits of the proposed scheme,
i.e., to show if all the above is even worth it. We believe that the results are highly encouraging and
that this approach is worth pursuing forward with additional simulations and analysis.

6. Conclusion and Future Work

In this work, we performed a simulation and a detailed analysis of applicability when using
commercial flights as an airborne platform for remote sensing in the form of aerial imagery. The results
showed the realistic feasibility of such a scheme with 83.28 percent of Europe covered. Such high
coverage, along with the ground sampling distance of 0.96 meters per pixel and the temporal frequency
of one image every half an hour provides benefits in comparison with satellite and drone imagery or
their combination. Furthermore, an average size of 126 gigabytes of images acquired during a single
flight certainly seems manageable in terms of storage and applicable for practical implementation.
The data could be downloaded after each landing and uploaded to the cloud. Finally, the results
showed that it was not necessary to include all airlines in order to achieve high coverage and frequency,
which makes this scheme even more feasible.

For future work, our goal is to obtain even more realistic coverage with aerial imagery by
including cloud coverage at different altitudes, as well as Sun patterns, e.g., day/night, time of day,
cloud shadows, etc. Furthermore, depending on the available data, we aim at performing a worldwide
simulation when using commercial flights as airborne platforms. This includes seas and oceans, as
well, which are important for search and rescue operations, as well as environmental science. Finally,
we plan to perform a more detailed analysis by taking into account the type of aircraft, which plays an
important role when adapting commercial aircraft for airborne photography.
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Abbreviations

The following abbreviations are used in this manuscript:

ETRS European Terrestrial Reference System
LAEA Lambert azimuthal equal area
CRS Coordinate reference system
EPSG European Petroleum Survey Group
IATA International Air Transport Association
ICAO International Civil Aviation Organization
DWD Deutscher Wetterdienst
UAV Unmanned aerial vehicle
UAS Unmanned aerial system
UFO Unidentified flying object
FOV Field of view
AOV Angle of view
CCD Charged coupled device
GSD Ground sampling distance
GIS Geographic Information System
LiDAR Laser imaging detection and ranging
SAR Synthetic Aperture Radar
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NIR Near-infrared
3D Three-dimensional
TB Terabyte
WW-I World War I
WW-II World War II
CAGR Compound Annual Growth Rate
USD United States Dollar
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