
Implementation of the Application Layer in the

Business Process Management System

Josip Lorincz, Anamarija Talaja, Dinko Begusic

FESB, University of Split, Croatia, e-mail: josip.lerinc@fesb.hr , atalaj00@fesb.hr, dinko.begusic@fesb.hr

Abstract— The paper deals with implementation of the

application layer in the business process management (BPM)

system of the telecom operator. Using the concept of service-

oriented architecture (SOA), it is possible to upgrade a process

management system from the two-layer architecture to the three-

layer architecture. In the three-layer architecture, presentation

and data layers are separated by a business logic layer. The

business logic layer contains application programming interfaces

(APIs) that communicates according to representational state

transfer (REST) protocol rules. In this paper, developed process

management tool uses APIs which are programmed by means of

Spring Boot technology in Java programming language.

Implementation of SOA based on APIs is shown on a client that

is programmed in Angular technology using TypeScript

language. The layer between the client and the database contain

APIs whose basic function is to fetch required data from an

Oracle database of a telecom operator. The approach proposed in

this paper allows upgrading of the existing two-layer to the three-

layer SOA of the software solution dedicated to the management

of telecom operator business processes.

Keywords – application layer, SOA, REST protocol, API, Spring

Boot, Angular

I. INTRODUCTION

Business process management (BPM) is a fundamental

monitoring approach for business processes. Supervision of

business processes provides insight into unfinished business

processes, which is essential for analysing the performance of

the system. Before the existence of operations support systems

(OSS), most of telecommunications business support jobs

were handled manually. Soon there was a need for a computer

usage, which enables business optimization of telecom

operators, and thus the concept of OSS systems is created. In

addition to the OSS system, there is a system called business

support system (BSS), which refers to the business systems

that deal with users and related sale processes. In the past,

OSS and BSS systems of the telecom operator were clearly

separated, but the complexity of the network led to their

mutual integration into the BSS/OSS or B/OSS form. The

OSS and BSS systems must work together to provide services

for the customer. Offering service to the customer today is

based on negotiation between demands of commercial

products controlled by the BSS system and the ability of the

OSS system to deliver requested service.

In this paper, a three-layer architecture which allows

monitoring of a telecom operator business processes is

developed. Using the concept of service-oriented architecture

(SOA), business logic layer is implemented between the

presentation and data layer as a middle layer. Through

application programming interfaces (APIs), which are

implemented on the business logic layer, the user of the

system can have better control of business processes. For the

development of APIs, the REST protocol is used and

resources are made in the JavaScript Object Notation (JSON)

format. The business logic layer is programmed in the Spring

Boot technology and client is programmed in the Angular

technology. Data resources are used from the Oracle database

system of a telecom operator. Data format is based on a

Representational State Transfer Protocol – JavaScript Object

Notation (REST-JSON). Hence, in this paper, an approach

allowing the upgrade of the two-layer to the three-layer SOA

for the software solution dedicated to the management of

telecom operator business processes is proposed.

The structure of this paper is as follows: Section II

provides a description of the related works. In Section III, the

description of the basic SOA concept with its main entities

and layered architecture are presented. In the next Section IV,

REST protocol whose rules are used for regulating APIs

communication are described. Program structure of the middle

layer and functions of implemented APIs, including program

structure of client and application model are introduced in

Section V. Finally, some concluding remarks are given in

Section VI.

II. RELATED WORK

In traditional systems, business functions are hardcoded in

the applications. Using the SOA concept, a function is coded

only once and then it can be reused many times. Authors in [1]

combined BPM and SOA, which generates greater efficiency

in the management of information systems. They proposed

BPM-SOA workflow model which consist of the six main

steps:

1. Setting the BPM

2. Setting the hypertext transfer protocol (HTTP) API(s)

for business process (BP) actions

3. Setting RESTFull resources

4. Setting RESTFull services

5. Implementing RESTFull services

6. Service unit testing

Setting the BPM and setting the HTTP API from BP actions

are the main steps that enable SOA and BPM integration.

Authors in [2] also suggest the unification of BPM and SOA.

They propose a layered architecture of common SOA and

mailto:josip.lerinc@fesb.hr
mailto:atalaj00@fesb.hr
mailto:dinko.begusic@fesb.hr

Fig. 1. SOA interaction model

BPM layers. Transformation of the traditional OSS by using

SOA and BPM is presented in [3]. The proposed architecture

is based on web service which wraps components to service,

such as authentication, authorization, accounting, service

activation and user management. It uses Enterprise Service

Bus to call inner services and outside services that belongs to

other applications. The most important thing is BPM,

dedicated to the development and management of the business

tasks by combining services with processes.

Authors in [4] introduce an architecture which combines

SOA and BPM. By combining SOA and BPM, tasks in the

BPM corresponds to the services in SOA. Authors in [5]

provide an approach for the interaction steps between process

and service modelling by means of the concept of meta-model

written in Meta Object Facility (MOF) language. They also

implement a software prototype that is supported by the

proposed meta-model. Authors in [6] present a proposal for

integrating meta-model with BPM and a meta-model for

components defined with Service Component Architecture.

Evaluation and categorization of five Java-based BPM

systems for integration with web services is done in [7]. It is

shown that the use of the domain-specific business activities is

the most sophisticated technique for integrating services.

The work in [8] suggests a public e-procurement (PeP)

system which is organized in the three-layer architecture: data

layer, business logic layer and presentation layer. However,

according to our knowledge, this is the first work which

presents the SOA concept based on the three-layer architecture

(data layer, middle layer and client) implemented for BPM of

a telecom operator. Novelty is that a developed and proposed

solution in this paper is based on the RESTfull services which

are using data from a telecom operator database. Additionally,

the REST API is using data of process engine that controls the

execution of telecom operator business processes.

III. SERVICE ORIENTED ARCHITECTURE

The SOA is an architectural style that uses methods and

technologies that enable dynamic connectivity and

communications of software from various business partners

and platforms by offering services in a reliable way. This

Fig. 2. Comparison of the two layer and three layer architecture

Fig. 3. Example of REST concept

approach allows advanced applications and information

systems implementation [9]. It defines the interaction model

based on service description between the main functional

units: service provider, service consumer and registry (Fig. 1).

As shown in Fig.1, functionalities of the main units of the

proposed SOA architecture are:

 Service description
An entity containing detail description of the services which

must be offered by the developed software solution based on

SOA.

 Service consumer
An entity searching for a service to perform the required

function. It can be an application or some form of the software

module. The location of the service can be found through the

registry, or if the location is already known, direct

communication between user and provider is possible.

 Service provider
An entity that accepts and executes requests from the user.

Provides description and implementation of offered services.

 Registry

The main function is to store description and location of

provider's services.

The SOA concept provides an implementation of the

middle layer between the presentation and data layer. Through

a two-layer architecture, the user has a direct connection with

a database. The two-layer architecture is used in a less

complex software systems, but it is also applicable in the

advanced systems to provide certain functionalities. The main

drawbacks of the two-layer architecture is a short system life

cycle, lack of advanced APIs and poor isolation of

programming code from the user. For that reason, a commonly

used application development model is based on the three-

layer architecture that supports an additional layer between

users and the database. This layer is known as the business

logic layer (Fig. 2), which allows isolation between users,

code and shared logic between different user's deployments.

IV. REST PROTOCOL

The REST protocol is an architectural style for

developing web services. It is popular due to its simplicity and

the fact that is built upon existing systems and features of the

Internet's HTTP protocol [10]. Development based on the

REST protocol approach is opposed to creating new standards,

frameworks and technologies, in order to achieve objectives of

software solutions based on the SOA concept.

Example of the REST concept is visualized in Fig. 3. As

shown in Fig. 3, the server contains data where the client may

request to display the status of that data. For example, if a

special source of data is stored in the database, displaying the

status of these data can represent a simple list of values from

the database. The client does not know where the server has

stored the data. The server could store data in the Oracle

database or in some file, which is not essential to the client.

The client is interested only in displaying the information

provided by the server. For displaying data, JSON data format

is often used. When a client wants to change some of the

resource content, server gives a resource view. After the client

changes resource, it sends resource back to the server which

adjusts changed content with a new view.

V. PROGRAM SOLUTION

Program solution proposed in this paper is based on the

software implementation of the middle layer between the

client and the database. The three APIs were implemented on

the middle layer. Resources of the APIs are visible on the

client side.

Functional specification of these three APIs are:

1. API for the retrieval of all process definitions

Program logic for getting all the process definitions

from the database. Based on a defined uniform

resource locator (URL), resources from the database

can be accessed.

2. API for retrieval of all process instances

The function of fetching all process instances by a

query that receives three parameters: identification

Fig. 4. Implementation of the middle layer for a real process management

system

(ID) of the process definition, the start date and the

completion date of the process instance execution.

Resources can be accessed by URL.

3. API for getting the execution steps of a particular

process instance

It has the function of fetching the entire hierarchical

structure of a particular process instance from the

database. Query receives ID of exact process instance.

A. Implementation of a Middle Layer in Existing

Architecture

Upgrading the existing two-layer architecture to the three

layer architecture was applied to the real process management

software system. In Fig. 4, implementation of the middle layer

for the real software application enabling telecom operator

process management is presented. Upgrading is achieved with

the implementation of the middle layer between the client and

database (Fig. 4). To achieve this, APIs are implemented in

the middle layer. By means of APIs, the efficiency of the

software system and its data is significantly improved. An

overview of all business processes allow BPM system users to

prioritize the performance of the individual business

processes. Through APIs, system user has insight into

unexecuted business processes that could endanger the

completion of the business process in the given time frame. As

shown in Fig. 4, the new architecture is based on the

implemented layer between Administration and monitoring

tools and database of the Process Engine. The basic elements

of architecture are:

 Administration and monitoring tools

Administration and monitoring tools enable monitoring of

business processes. Existing administration and

monitoring tool is replaced by the client who provides

better insight into the execution of business processes.

The client is programmed in Angular technology.

 Middle layer

Middle layer implementation is based on APIs. APIs have

a direct connection to the Process Engine database which

enables full separation of data and presentation layer

(Fig.4.).

 Process Engine

Represents the core of the BPM system. It is developed in

Oracle's Procedural Language/Structured Query Language

(PL/SQL). The basic function of the Process Engine is to

control the execution of the process from the start to the

end point. In order to enable operation of the Process

Engine, descriptive tables, functions and procedures are

required. The basic solution that is implemented in

practice was provided by information system based on a

process model. The process model allows mapping of the

operational business processes, their management and

execution.

 Task Management

Main function of the Task management is control of task

execution. Control is performed by assigning a task to the

particular execution group and then tracking the execution

time of a particular task.

 Work orders

The Work order is made according to the description of the

technical details from the catalogue containing different

working activities of telecom operator staff. The Work

order is made in the form of a document containing all the

essential information required by the staff which will

operationally execute work order in the field.

Monitoring statistic of the process execution provides the

basis for determining key performance indicators (KPIs). A

KPI is a measurable value that demonstrates how effectively a

company is achieving key business objectives [11]. Through

the developed system, monitoring of the most important KPIs

is enabled. An example of a KPI, implemented in existing

system, is an average total duration of a business process,

where shorter time indicates the more desirable value of the

KPI. Second KPI indicator, implemented in existing system,

belongs to volume metric value, and it is measuring the total

number of realized requests for the specific services. The

higher number of realized requests, the more desirable the KPI

value is. Last implemented KPI indicator is measurement of

working time on specific tasks and work orders. Shorter

average working time means the more desirable KPI value.

B. Middle Layer Program Structure

The APIs methods have been developed in the IntelliJ

IDEA programming environment. APIs are programmed in

Spring Boot technology that is based on the Java oriented

framework Spring. Spring Boot is selected since it enables

creating stand-alone, production-grade Spring based

applications and it is suitable for connection with third-party

libraries. Following the REST concept and corresponding

rules, each API is a separated web method that has its own

functionality and independence.

Fig. 5. Program structure of the middle layer

Fig. 6. Program structure of the client application

Program structure of developed middle layer is presented

in Fig. 5. The programming structure consists of three basic

units:

Fig. 7. Table view of all process instances (in Croatian)

Fig. 8. Steps to execute a certain process instance (in Croatian)

 Controller

Contains API's program logic. The APIs class is flagged

by the @RestController annotation, which means that API

behaves according to the REST protocol rules

 Model

It contains the attributes in which the columns from the

database tables are mapped. Each row of the database

tables represents an object that is the type of model class.

 Repository

Represents database interface. Includes database queries

with related methods. Each query is written in the

Structured Query Language (SQL). Repository methods

are invoked in the controller.

As shown in Fig. 5, the controller (ProcessController)

represents the focus of the entire programming architecture.

This class controller generates and uses object instances.

There are three model classes, one repository and controller.

Model classes and repository extends all controller methods.

Within the controller, there are methods that call for the

repository methods (defPRepository). A method that is defined

in the controller class contains the URL through which API

resources will be available. Repository (ProcessRepository)

contains methods that retrieve all process definitions, process

instances and steps of executing particular process instance

based on a defined query.

A. Client Program Structure

The client application is developed in the Visual Studio

Code programming environment using Angular technology.

Angular enables component based architecture that provides a

higher quality of code and it is easy for use. The program

structure of the client application is presented in Fig. 6. It is

structured into the two components (TreeComponent and

ProcessComponent) and one service (DataService). Within the

service, there are API's URL. Data requirements are realized

through the HTTP protocol. Both components can access the

service. Program code is written in a TypeScript program

language. The TypeScript is a strict syntactical superset of

JavaScript language. As an open source programming

language it is designed for development of large applications

and transcompiles to JavaScript.

As shown in Fig. 6, OnInit() method allows loading two

components when launching an application. Both components

are separated and contain attributes and methods that are

https://en.wikipedia.org/wiki/Source-to-source_compiler

mutually independent. Each component can be used as a

separate block unit in any client environment.

The client contains Kendo user interface (UI) controls

which allow user better review of API resources. Kendo UI

controls can be taken from Telerik Progress web site. Telerik

is a company offering software tools for web, mobile and

desktop application development and subscription services for

cross-platform application development [12]. Kendo UI

controls are implemented in Hypertext Markup Language

(HTML) component's file and edited in Cascading Style

Sheets (CSS) file. All the process definitions are implemented

in a drop-down list which represents Kendo UI control.

Process instances are shown in the table view presented in Fig.

7. Execution steps of the particular process instance are shown

in the tree view which also represents Kendo UI control. The

tree view control presented in Fig. 8 is organized in the

hierarchical data structure. Each component represents one

application view.

DataService presented in Fig. 6 is a separate entity. It is

independent of any component. Within its class, there are

three methods: getAll(), getSpecificData() and

getHierarchyData(). Each of these methods belongs to one

API whose program logic is implemented on the middle layer

calls of the business logic layer. Within the method, an HTTP

request is executed where unique URLs of each API are

implemented. The instance of the DataService class is

implemented within the component's constructor and can thus

access the resources of every API by its URL.

A. Application Model

As shown in Fig. 7, the user gets details about all process

instances for selected process definition. Through table view,

user gets process instance ID, the name of process definition,

start and end date of its execution, name of state and status

which provides information on whether the process instance is

finished.

Fig. 8 shows the hierarchical structure of each process

instance. The user has insight into the steps of execution of the

process instances as well as the ability to see the steps

preceding its execution. According to Fig. 8, the execution

status of each process is clearly indicated for every business

process scheduled for realization.

VI. CONCLUSION

By using the SOA concept, software products from

various business partners and platforms can be dynamically

connected. Systems that fully implement the SOA concept are

characterized by the rapid advancement of the business

process and the quick adaptation of the information system to

new changes and requirements. This approach makes the

system agile.

In this paper, the two-layer software architecture of a

telecom operator workflow process management has been

upgraded to the three-layer SOA. The main advantage of the

proposed solution is separation of the client side and database

side of BPM system and the use of the APIs as the logic

holder.

By means of APIs that are programmed according to the

REST protocol rules, the user of the BPM software system can

access any required resource. All the logic required for

fetching data from the database is placed in the APIs. Client's

function is only to show resources in the required form.

Through the client, the user of the process management

solution has insight into all process instances for the selected

process definition and can follow the steps of executing an

individual process instance.

REFERENCES

[1] Octavian Dospinescu, Catalin Strimbei, Roxana Strainu and Alexandra

Nistor. “REST SOA orchestration and BPM platforms”, In Informatica
Economică vol.21, no. 1/2017, pp.: 30-42., https://bit.ly/2Klkpuz

[2] Imran Sarwar Bajwa, Rafaqut Kazmi, Shahzad Mumtaz, M. Abbas
Choudhary and M. Shahid Naweed, “SOA and BPM partnership: A

paradigm for Dynamic and Flexible Process and I. T. Management”, In

World Academy of Science, Engineering and Technology, International

Journal of Economics and Management Engineering vol:2, No:9, 2008,

pp.: 990-996., https://bit.ly/2KmFzbM

[3] Jian Tang,Haitao Qu,Qian Wang,Xiaoxiang Luo,Renjie Pi, “Transform
traditional OSS by using SOA and BPM”, In 2008 Third International

Conference on Pervasive Computing and Applications, 2008,Vol.2, pp.:
999-1002

[4] Fuhua Ge,Shaowen Yao, “Architecture combining SOA and BPM”, In

2011 International Conference on Computer Science and Service System
(CSSS), 2011, pp.:2124-2127

[5] Bazán Patricia,Gabriela Perez,Roxana Giandini,Javier Diaz,” Process-
Service Interactions Using a SOA-BPM-Based Methodology”, In 2011

30th International Conference of the Chilean Computer Science Society,

2011,pp.: 100-107

[6] Patricia Bazán,Gabriela Perez,Roxana Giandini,Elsa Estevez ,Javier

Diaz “Services conceptualization within SOA/BPM methodology”,In

2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI),
2012, pp.: 1-10

[7] Markus Doedt,Bernhard Steffen,” An Evaluation of Service Integration

Approaches of Business Process Management Systems”,In 2012 35th

Annual IEEE Software Engineering Workshop, 2012, pp.: 158-167

[8] Vjekoslav Bobar, Ksenija Mandic, “Design and implementation of
Software Architecture for Public e-procurement System in Serbia”, In

International Conference on Information Society and Technology

(ICIST), 2014, Vol.2, Poster papers, pp.: 338-343,
https://bit.ly/2Md955w

[9] G. Selda, “Service Oriented Architecture“, Internet, 4 August 2005

https://bit.ly/2OVrp4Y

[10] L. Keneth, “The little book on REST services “, Internet, 2016,

https://bit.ly/2vvuWih

[11] Internet, August 2018, https://bit.ly/29tAwDO

[12] Wikipedia (https://en.wikipedia.org/wiki/Telerik), July 2018.

